Machine learning algorithms in ship design optimization

被引:0
|
作者
Peri, Daniele [1 ]
机构
[1] CNR IAC Natl Res Council, Ist Applicazioni Calcolo Mauro Picone, Via Taurini 19, I-00185 Rome, Italy
关键词
Design optimization; global optimization; machine learning; APPROXIMATION; METAMODELS;
D O I
10.1080/09377255.2023.2250160
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Numerical optimization of complex systems benefits from the technological development of computing platforms in the last 20 years. Unfortunately, this is still not enough, and a large computational time is necessary for the solution of optimization problems when mathematical models that implement rich (and therefore realistic) physical models are adopted. In this paper, we show how the combination of optimization and Artificial Intelligence (AI), in particular Machine Learning algorithms, can help, strongly reducing the overall computational times, making also possible the use of complex simulation systems within the optimization cycle. Original approaches are proposed.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Optimization of Thermal Conductance at Interfaces Using Machine Learning Algorithms
    Rustam, Sabiha
    Schram, Malachi
    Lu, Zexi
    Chaka, Anne M.
    Rosenthal, W. Steven
    Pfaendtner, Jim
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (28) : 32590 - 32597
  • [22] Bayesian Optimization with Machine Learning Algorithms Towards Anomaly Detection
    Injadat, MohammadNoor
    Salo, Fadi
    Nassif, Ali Bou
    Essex, Aleksander
    Shami, Abdallah
    [J]. 2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [23] Survey on Parallel and Distributed Optimization Algorithms for Scalable Machine Learning
    Kang, Liang-Yi
    Wang, Jian-Fei
    Liu, Jie
    Ye, Dan
    [J]. Ruan Jian Xue Bao/Journal of Software, 2018, 29 (01): : 109 - 130
  • [24] Allying topology and shape optimization through machine learning algorithms
    Munoz, D.
    Nadal, E.
    Albelda, J.
    Chinesta, F.
    Rodenas, J. J.
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2022, 204
  • [25] Accelerated First-Order Optimization Algorithms for Machine Learning
    Li, Huan
    Fang, Cong
    Lin, Zhouchen
    [J]. PROCEEDINGS OF THE IEEE, 2020, 108 (11) : 2067 - 2082
  • [26] An optimization on machine learning algorithms for mapping snow avalanche susceptibility
    Peyman Yariyan
    Ebrahim Omidvar
    Foad Minaei
    Rahim Ali Abbaspour
    John P. Tiefenbacher
    [J]. Natural Hazards, 2022, 111 : 79 - 114
  • [27] Investigation and Optimization of EOR Screening by Implementing Machine Learning Algorithms
    Su, Shengshuai
    Zhang, Na
    Wang, Peng
    Jia, Shun
    Zhang, Acacia
    Wang, Han
    Zhang, Min
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [28] An optimization on machine learning algorithms for mapping snow avalanche susceptibility
    Yariyan, Peyman
    Omidvar, Ebrahim
    Minaei, Foad
    Ali Abbaspour, Rahim
    Tiefenbacher, John P.
    [J]. NATURAL HAZARDS, 2022, 111 (01) : 79 - 114
  • [29] Automatic text classification using machine learning and optimization algorithms
    Janani, R.
    Vijayarani, S.
    [J]. SOFT COMPUTING, 2021, 25 (02) : 1129 - 1145
  • [30] Optimization of Machine Learning Algorithms for Proteomic Analysis Using TOPSIS
    Javanbakht, T.
    Chakravorty, S.
    [J]. JOURNAL OF ENGINEERING SCIENCES-UKRAINE, 2022, 9 (02): : E7 - E11