Study of gas-liquid two-phase flow characteristics in hydrate-bearing sediments

被引:0
|
作者
Zhang, Ningtao [1 ,2 ]
Li, Shuxia [1 ,2 ]
Chen, Litao [2 ]
Guo, Yang [2 ]
Liu, Lu [2 ]
机构
[1] China Univ Petr East China, Key Lab Unconvent Oil & Gas Dev, Minist Educ, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane hydrate; Gas-liquid flow; Flow characteristics; Phase field method; Jamin effect; POROUS-MEDIA; METHANE HYDRATE; PRESSURE; WATER; PERMEABILITY; DISSOCIATION; MICROCHANNELS; SIMULATION; PATTERNS;
D O I
10.1016/j.energy.2023.130215
中图分类号
O414.1 [热力学];
学科分类号
摘要
The characteristics of gas-liquid two-phase flow in hydrate-bearing sediments (HBS) are critical for natural gas hydrate production. This study experimentally investigates the flow patterns in the presence of hydrates and employs the phase field method for accurate simulations. Additionally, flow pressure differences in a capillary model were analyzed, and the impacts of occurrence patterns, saturation, and wettability of hydrates were investigated by numerical simulation. The results show that flow patterns are predominantly influenced by flow velocity. At high flow rates (Reynolds number >10), different gas-liquid ratios result in a variety of flow patterns, including annular, Taylor, and bubble flow. However, at lower flow rates (Reynolds number <10), the flow pattern consistently manifests as Taylor flow, regardless of gas-liquid ratio variations. Notably, the Jamin effect (a significant pressure differential caused by hydrates within the flow) was observed, which intensifies with increasing hydrate saturation and decreasing contact angle. Pore-filling hydrate patterns, in contrast to graincoating, exhibit a greater number of gas-liquid interfaces, leading to larger pressure differences and a more evident Jamin effect. These findings aid in understanding the fluid migration in HBS and help estimate the natural gas production capacity.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Study on the prediction method and the flow characteristics of gas-liquid two-phase flow patterns in the suction chamber
    Shao, Chunlei
    Bao, Ning
    Wang, Sheng
    Zhou, Jianfeng
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2022, 32 (08) : 2700 - 2718
  • [32] A geomechanical model for gas hydrate-bearing sediments
    Gai, Xuerui
    Sanchez, Marcelo
    ENVIRONMENTAL GEOTECHNICS, 2017, 4 (02): : 143 - 156
  • [33] Study on the Influence of the Microgravity on the Flow and Heat Transfer Characteristics of Gas-Liquid Two-Phase Flow in Evaporator
    Ma, Rui
    Guo, Jiamin
    Ye, Yilin
    Wu, Yuting
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2023, 35 (06)
  • [34] Drag reduction characteristics on gas-liquid two-phase flow based on gas jet
    Gu, Yun-Qing
    Mu, Jie-Gang
    Dai, Dong-Shun
    Zheng, Shui-Hua
    Jiang, Lan-Fang
    Wu, Deng-Hao
    Tuijin Jishu/Journal of Propulsion Technology, 2015, 36 (11): : 1640 - 1647
  • [35] INFLUENCE OF GAS PROPERTIES ON GAS-LIQUID TWO-PHASE FLOW
    Saito, Miki
    Kanai, Taizo
    Nishimura, Satoshi
    Nishi, Yoshihisa
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE2020), VOL 3, 2020,
  • [36] Water and Gas Flows in Hydrate-Bearing Sediments
    Xu, Yue
    Seol, Yongkoo
    Jang, Jaewon
    Dai, Sheng
    GEOTECHNICAL FRONTIERS 2017: GEOTECHNICAL MATERIALS, MODELING, AND TESTING, 2017, (280): : 766 - 772
  • [37] Liquid holdup in horizontal two-phase gas-liquid flow
    AbdulMajeed, GH
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 1996, 15 (2-4) : 271 - 280
  • [38] Numerical Investigation of Flow Characteristics for Gas-Liquid Two-Phase Flow in Coiled Tubing
    Sun, Shihui
    Liu, Jiahao
    Zhang, Wan
    Yi, Tinglong
    PROCESSES, 2022, 10 (12)
  • [39] Flow structure of gas-liquid two-phase flow in an annulus
    Ozar, B.
    Jeong, J. J.
    Dixit, A.
    Julia, J. E.
    Hibiki, T.
    Ishiia, M.
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (15) : 3998 - 4011
  • [40] Elastic properties of gas hydrate-bearing sediments
    Lee, MW
    Collett, TS
    GEOPHYSICS, 2001, 66 (03) : 763 - 771