Multi-Agent Reinforcement Learning for Highway Platooning

被引:2
|
作者
Kolat, Mate [1 ]
Becsi, Tamas [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Control Transportat & Vehicle Syst, H-1111 Budapest, Hungary
关键词
deep learning; reinforcement learning; platooning; road traffic control; multi-agent systems; VEHICLE; GAME;
D O I
10.3390/electronics12244963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of autonomous vehicles has opened new horizons for transportation efficiency and safety. Platooning, a strategy where vehicles travel closely together in a synchronized manner, holds promise for reducing traffic congestion, lowering fuel consumption, and enhancing overall road safety. This article explores the application of Multi-Agent Reinforcement Learning (MARL) combined with Proximal Policy Optimization (PPO) to optimize autonomous vehicle platooning. We delve into the world of MARL, which empowers vehicles to communicate and collaborate, enabling real-time decision making in complex traffic scenarios. PPO, a cutting-edge reinforcement learning algorithm, ensures stable and efficient training for platooning agents. The synergy between MARL and PPO enables the development of intelligent platooning strategies that adapt dynamically to changing traffic conditions, minimize inter-vehicle gaps, and maximize road capacity. In addition to these insights, this article introduces a cooperative approach to Multi-Agent Reinforcement Learning (MARL), leveraging Proximal Policy Optimization (PPO) to further optimize autonomous vehicle platooning. This cooperative framework enhances the adaptability and efficiency of platooning strategies, marking a significant advancement in the pursuit of intelligent and responsive autonomous vehicle systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Highway Merging Control Using Multi-Agent Reinforcement Learning
    Irshayyid, Ali
    Chen, Jun
    [J]. 2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [2] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    [J]. 2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43
  • [3] Predicting Driver Behavior on the Highway with Multi-Agent Adversarial Inverse Reinforcement Learning
    Radtke, Henrik
    Bey, Henrik
    Sackmann, Moritz
    Schoen, Torsten
    [J]. 2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [4] Multi-Agent Cognition Difference Reinforcement Learning for Multi-Agent Cooperation
    Wang, Huimu
    Qiu, Tenghai
    Liu, Zhen
    Pu, Zhiqiang
    Yi, Jianqiang
    Yuan, Wanmai
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [5] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [7] Learning to Share in Multi-Agent Reinforcement Learning
    Yi, Yuxuan
    Li, Ge
    Wang, Yaowei
    Lu, Zongqing
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [8] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    [J]. Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [9] The Dynamics of Multi-Agent Reinforcement Learning
    Dickens, Luke
    Broda, Krysia
    Russo, Alessandra
    [J]. ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 367 - 372
  • [10] Multi-agent reinforcement learning: A survey
    Busoniu, Lucian
    Babuska, Robert
    De Schutter, Bart
    [J]. 2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1133 - +