Highway Merging Control Using Multi-Agent Reinforcement Learning

被引:0
|
作者
Irshayyid, Ali [1 ]
Chen, Jun [1 ]
机构
[1] Oakland Univ, Dept Elect & Comp Engn, Rochester, MI 48309 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/ICMI60790.2024.10585649
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a multi-agent reinforcement learning approach for autonomous vehicle highway merging control. A decentralized partially observable Markov decision process is formulated, where each autonomous vehicle acts independently based on local observations. The scenario considered in this paper assumes randomly spawning vehicles and fluctuating traffic flows and a self-attention network is used to handle varying numbers of agents (vehicles). The proposed method is validated in SUMO traffic simulator, which provides a realistic highway simulation environment. Results demonstrate the approach can enable safe, efficient coordination for merging maneuvers, successfully handling dynamic number of agents. Future work will continue to enhance multi-agent reinforcement learning for autonomous vehicle coordination in complex traffic environments by reducing the training time.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Deep Multi-Agent Reinforcement Learning for Highway On-Ramp Merging in Mixed Traffic
    Chen, Dong
    Hajidavalloo, Mohammad R.
    Li, Zhaojian
    Chen, Kaian
    Wang, Yongqiang
    Jiang, Longsheng
    Wang, Yue
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) : 11623 - 11638
  • [2] Multi-Agent Reinforcement Learning for Highway Platooning
    Kolat, Mate
    Becsi, Tamas
    [J]. ELECTRONICS, 2023, 12 (24)
  • [3] Cranes control using multi-agent reinforcement learning
    Arai, S
    Miyazaki, K
    Kobayashi, S
    [J]. INTELLIGENT AUTONOMOUS SYSTEMS: IAS-5, 1998, : 335 - 342
  • [4] Automated Driving Highway Traffic Merging using Deep Multi-Agent Reinforcement Learning in Continuous State-Action Spaces
    Schester, Larry
    Ortiz, Luis E.
    [J]. 2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, : 280 - 287
  • [5] Traffic flow control using multi-agent reinforcement learning
    Zeynivand, A.
    Javadpour, A.
    Bolouki, S.
    Sangaiah, A. K.
    Jafari, F.
    Pinto, P.
    Zhang, W.
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2022, 207
  • [6] Optimal control in microgrid using multi-agent reinforcement learning
    Li, Fu-Dong
    Wu, Min
    He, Yong
    Chen, Xin
    [J]. ISA TRANSACTIONS, 2012, 51 (06) : 743 - 751
  • [7] Multi-agent reinforcement learning for character control
    Li, Cheng
    Fussell, Levi
    Komura, Taku
    [J]. VISUAL COMPUTER, 2021, 37 (12): : 3115 - 3123
  • [8] Multi-agent reinforcement learning for character control
    Cheng Li
    Levi Fussell
    Taku Komura
    [J]. The Visual Computer, 2021, 37 : 3115 - 3123
  • [9] Variable Speed Limit Control for the Motorway-Urban Merging Bottlenecks Using Multi-Agent Reinforcement Learning
    Fang, Xuan
    Peter, Tamas
    Tettamanti, Tamas
    [J]. SUSTAINABILITY, 2023, 15 (14)
  • [10] Hierarchical Control of Multi-Agent Systems using Online Reinforcement Learning
    Bai, He
    George, Jemin
    Chakrabortty, Aranya
    [J]. 2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 340 - 345