Thermally-driven scintillator flow in the SNO plus neutrino detector

被引:0
|
作者
Wilson, J. D. [1 ,2 ]
机构
[1] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada
[2] Univ Alberta, Dept Earth & Atmospher Sci, 1-26 Earth Sci Bldg, Edmonton, AB T6G 2E3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Neutrino detector; Spherical fluid cavity; Internal convection; Fluid scintillator motion; Internal gravity wave; STATE NATURAL-CONVECTION;
D O I
10.1016/j.nima.2023.168430
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The SNO+ neutrino detector is an acrylic sphere (radius 6 m) with a thin vertical neck containing almost 800 tonnes of liquid scintillator. The apparatus is immersed in a water-filled underground cavern, the neck protruding upward into a manifold above water level, with scintillator filling the sphere and rising up the neck some 6 m to an interface with purified nitrogen gas. Time-dependent flow simulations have been performed to investigate convective motion of the scintillator fluid, motivated by observations of a transient radon (222Rn) contamination layer which, over a period of two weeks, sank from near the base of the neck to the detector's equator. According to simulations, this motion may have been induced by heat transfer through the detector wall, that resulted in buoyant ascending flow within a thin wall boundary layer and compensating sink elsewhere. This mechanism can result in transport down the neck to the sphere on a time scale of several hours. If the scintillator happens to be thermally stratified, the same forcing by a weak wall heat flux produces internal gravity waves in the spherical flow domain, at the Brunt-Vaisala frequency. Nevertheless as oscillatory motion is by its nature non-diffusive, simulations confirm that imposing strong thermal stratification over the depth of the neck can mitigate mixing due to transient heat fluxes.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Upscaling a Model for the Thermally-Driven Motion of Screw Dislocations
    T. Hudson
    Archive for Rational Mechanics and Analysis, 2017, 224 : 291 - 352
  • [32] Thermally-driven physisorption-based hydrogen compressors
    Myekhlai, Munkhshur
    Park, Sejin
    Webb, James E. A.
    Oh, Hyunchul
    COORDINATION CHEMISTRY REVIEWS, 2024, 519
  • [33] Understanding the SNO plus Detector
    Kamdin, K.
    13TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, TAUP 2013, 2015, 61 : 719 - 723
  • [34] Commissioning the SNO plus Detector
    Caden, E.
    Coulter, I.
    XXVII INTERNATIONAL CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS (NEUTRINO2016), 2017, 888
  • [35] A scintillator purification system for the Borexino solar neutrino detector
    Benziger, J.
    Cadonati, L.
    Calaprice, F.
    Chen, M.
    Corsi, A.
    Dalnoki-Veress, F.
    Fernholz, R.
    Ford, R.
    Galblati, C.
    Goretti, A.
    Harding, E.
    Iannic, Aldo
    Ianni, Andrea
    Kidner, S.
    Leung, M.
    Loeser, F.
    McCarty, K.
    McKinsey, D.
    Nelson, A.
    Pocar, A.
    Salvo, C.
    Schimizzi, D.
    Shutt, T.
    Sonnenschein, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2008, 587 (2-3): : 277 - 291
  • [36] Scintillator Detectors of Charged Particles for a Cherenkov Neutrino Detector
    M. V. Danilov
    N. V. Ershov
    A. S. Kobyakin
    Yu. G. Kudenko
    V. Yu. Rusinov
    E. I. Tarkovskii
    D. V. Fedorova
    S. A. Fedotov
    A. A. Chvirova
    D. O. Chernov
    Instruments and Experimental Techniques, 2023, 66 : 558 - 562
  • [37] A liquid scintillator for a neutrino detector working at −50 degree
    Xie, Zhangquan
    Cao, Jun
    Ding, Yayun
    Liu, Mengchao
    Sun, Xilei
    Wang, Wei
    Xie, Yuguang
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1009
  • [38] The scintillator solvent procurement for the Borexino solar neutrino detector
    Giammarchi, M. G.
    Gandolfo, P. L.
    Lombardi, P.
    Miramonti, L.
    Ortica, F.
    Parmeggiano, S.
    Romani, A.
    Salvo, C.
    Tronci, P.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 648 (01): : 100 - 108
  • [39] THERMALLY-DRIVEN STELLAR WINDS IN LATE-TYPE STARS
    WATANABE, T
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 1981, 33 (04) : 679 - 699
  • [40] Scintillator Detectors of Charged Particles for a Cherenkov Neutrino Detector
    Danilov, M. V.
    Ershov, N. V.
    Kobyakin, A. S.
    Kudenko, Yu. G.
    Rusinov, V. Yu.
    Tarkovskii, E. I.
    Fedorova, D. V.
    Fedotov, S. A.
    Chvirova, A. A.
    Chernov, D. O.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2023, 66 (04) : 558 - 562