Anti-adversarial Consistency Regularization for Data Augmentation: Applications to Robust Medical Image Segmentation

被引:3
|
作者
Cho, Hyuna [1 ]
Han, Yubin [1 ]
Kim, Won Hwa [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Pohang, South Korea
关键词
Adversarial attack and defense; Data augmentation; Semantic segmentation;
D O I
10.1007/978-3-031-43901-8_53
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Modern deep learning methods for semantic segmentation require labor-intensive labeling for large-scale datasets with dense pixel-level annotations. Recent data augmentation methods such as dropping, mixing image patches, and adding random noises suggest effective ways to address the labeling issues for natural images. However, they can only be restrictively applied to medical image segmentation as they carry risks of distorting or ignoring the underlying clinical information of local regions of interest in an image. In this paper, we propose a novel data augmentation method for medical image segmentation without losing the semantics of the key objects (e.g., polyps). This is achieved by perturbing the objects with quasi-imperceptible adversarial noises and training a network to expand discriminative regions with a guide of anti-adversarial noises. Such guidance can be realized by a consistency regularization between the two contrasting data, and the strength of regularization is automatically and adaptively controlled considering their prediction uncertainty. Our proposed method significantly outperforms various existing methods with high sensitivity and Dice scores and extensive experiment results with multiple backbones on two datasets validate its effectiveness.
引用
收藏
页码:555 / 566
页数:12
相关论文
共 50 条
  • [21] Data augmentation strategies for semi-supervised medical image segmentation
    Wang, Jiahui
    Ruan, Dongsheng
    Li, Yang
    Wang, Zefeng
    Wu, Yongquan
    Tan, Tao
    Yang, Guang
    Jiang, Mingfeng
    PATTERN RECOGNITION, 2025, 159
  • [22] Data augmentation based on multiple oversampling fusion for medical image segmentation
    Wu, Liangsheng
    Zhuang, Jiajun
    Chen, Weizhao
    Tang, Yu
    Hou, Chaojun
    Li, Chentong
    Zhong, Zhenyu
    Luo, Shaoming
    PLOS ONE, 2022, 17 (10):
  • [23] MIXING DATA AUGMENTATION WITH PRESERVING FOREGROUND REGIONS IN MEDICAL IMAGE SEGMENTATION
    Liu, Xiaoqing
    Ono, Kenji
    Bise, Ryoma
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [24] Differentiable Automatic Data Augmentation by Proximal Update for Medical Image Segmentation
    He, Wenxuan
    Liu, Min
    Tang, Yi
    Liu, Qinghao
    Wang, Yaonan
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (07) : 1315 - 1318
  • [25] Differentiable Automatic Data Augmentation by Proximal Update for Medical Image Segmentation
    Wenxuan He
    Min Liu
    Yi Tang
    Qinghao Liu
    Yaonan Wang
    IEEE/CAAJournalofAutomaticaSinica, 2022, 9 (07) : 1315 - 1318
  • [26] A data augmentation approach that ensures the reliability of foregrounds in medical image segmentation
    Liu, Xiaoqing
    Ono, Kenji
    Bise, Ryoma
    IMAGE AND VISION COMPUTING, 2024, 147
  • [27] HSMix: Hard and soft mixing data augmentation for medical image segmentation
    Sun, D.
    Dornaika, F.
    Barrena, N.
    INFORMATION FUSION, 2025, 115
  • [28] Unsupervised Image Segmentation by Mutual Information Maximization and Adversarial Regularization
    Mirsadeghi, S. Ehsan
    Royat, Ali
    Rezatofighi, Hamid
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 6931 - 6938
  • [29] A new data augmentation method based on local image warping for medical image segmentation
    Liu, Hong
    Cao, Haichao
    Song, Enmin
    Ma, Guangzhi
    Xu, Xiangyang
    Jin, Renchao
    Liu, Tengying
    Liu, Lei
    Liu, Daiyang
    Hung, Chih-Cheng
    MEDICAL PHYSICS, 2021, 48 (04) : 1685 - 1696
  • [30] MM-GAN: 3D MRI Data Augmentation for Medical Image Segmentation via Generative Adversarial Networks
    Sun, Yi
    Yuan, Peisen
    Sun, Yuming
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 227 - 234