Optimizing the predictive power of depression screenings using machine learning

被引:2
|
作者
Terhorst, Yannik [1 ,4 ]
Sander, Lasse B. [2 ]
Ebert, David D. [3 ]
Baumeister, Harald [1 ]
机构
[1] Univ Ulm, Inst Psychol & Educ, Dept Clin Psychol & Psychotherapy, Ulm, Germany
[2] Univ Freiburg, Fac Med, Med Psychol & Med Sociol, Freiburg, Germany
[3] Tech Univ Munich, Chair Psychol & Digital Mental Hlth Care, Dept Sport & Hlth Sci, Munich, Germany
[4] Univ Ulm, Inst Psychol & Educ, Dept Clin Psychol & Psychotherapy, Lise Meitner Str 16, D-89081 Ulm, Germany
来源
DIGITAL HEALTH | 2023年 / 9卷
关键词
Major depressive disorder; diagnosis; machine learning; digital health; health care; 16-ITEM QUICK INVENTORY; RATING-SCALE; HEALTH-CARE; PSYCHOMETRIC EVALUATION; OUTCOMES MEASUREMENT; SYMPTOMATOLOGY; SEVERITY; CLASSIFICATION; VALIDATION; PHQ-9;
D O I
10.1177/20552076231194939
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective: Mental health self-report and clinician-rating scales with diagnoses defined by sum-score cut-offs are often used for depression screening. This study investigates whether machine learning (ML) can detect major depressive episodes (MDE) based on screening scales with higher accuracy than best-practice clinical sum-score approaches. Methods: Primary data was obtained from two RCTs on the treatment of depression. Ground truth were DSM 5 MDE diagnoses based on structured clinical interviews (SCID) and PHQ-9 self-report, clinician-rated QIDS-16, and HAM-D-17 were predictors. ML models were trained using 10-fold cross-validation. Performance was compared against best-practice sum-score cut-offs. Primary outcome was the Area Under the Curve (AUC) of the Receiver Operating Characteristic curve. DeLong's test with bootstrapping was used to test for differences in AUC. Secondary outcomes were balanced accuracy, precision, recall, F1-score, and number needed to diagnose (NND). Results: A total of k = 1030 diagnoses (no diagnosis: k = 775; MDE: k = 255) were included. ML models achieved an AUC(QIDS- 16) = 0.94, AUC(HAM- D-17) = 0.88, and AUC(PHQ- 9) = 0.83 in the testing set. ML AUC was significantly higher than sum-score cut-offs for QIDS-16 and PHQ-9 (ps <= 0.01; HAM_D-17: p = 0.847). Applying optimal prediction thresholds, QIDS-16 classifier achieved clinically relevant improvements (Delta balanced accuracy = 8%, Delta F1-score = 14%, Delta NND = 21%). Differences for PHQ_9 and HAM-D-17 were marginal. Conclusions: ML augmented depression screenings could potentially make a major contribution to improving MDE diagnosis depending on questionnaire (e.g., QIDS-16). Confirmatory studies are needed before ML enhanced screening can be implemented into routine care practice.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Depression Detection using Extreme Learning Machine
    Dutta, Prajna
    Gupta, Deepak
    Mauiya, Jyoti
    2024 4TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2024, 2024, : 42 - 47
  • [22] Detection of Depression Using Machine Learning Algorithms
    Kumar, M. Ravi
    Pooja, Kadoori
    Udathu, Meghana
    Prasanna, J. Lakshmi
    Santhosh, Chella
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (04) : 155 - 163
  • [23] Predictive Maintenance of Server using Machine Learning and Deep Learning
    Yeole, Anjali
    Mane, Dashrath
    Gawali, Mahindra
    Lalwani, Manas
    Chetwani, Mahindra
    Suryavanshi, Parth
    Anala, Harshita
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (05) : 2828 - 2833
  • [24] Improving the predictive power of microkinetic models via machine learning
    Rangarajan, Srinivas
    Tian, Huijie
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2022, 38
  • [25] Predictive Maintenance of Power Substation Equipment by Infrared Thermography Using a Machine-Learning Approach
    Ullah, Irfan
    Yang, Fan
    Khan, Rehanullah
    Liu, Ling
    Yang, Haisheng
    Gao, Bing
    Sun, Kai
    ENERGIES, 2017, 10 (12)
  • [26] Using Machine Learning to Assess the Predictive Power of Donor Characteristics in Pediatric Heart Transplant Outcomes
    Porter, M. D.
    Sharff, J. R.
    Dixon, R.
    Haregu, F.
    McCulloch, M.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2024, 43 (04): : S622 - S622
  • [27] Predictive Modeling of Software Behavior Using Machine Learning
    Saksupawattanakul, C.
    Vatanawood, W.
    IEEE ACCESS, 2024, 12 : 120584 - 120596
  • [28] Predictive Analysis for Personal Loans by Using Machine Learning
    Huang, Hui-I.
    Wang, Chou-Wen
    Wu, Chin-Wen
    HCI IN BUSINESS, GOVERNMENT AND ORGANIZATIONS, PT I, HCIBGO 2024, 2024, 14720 : 187 - 199
  • [29] PREDICTIVE MODELING OF STUDENT SUCCESS USING MACHINE LEARNING
    Hoti, Arber H.
    Zenuni, Xhemal
    Ajdari, Jaumin
    Ismaili, Florije
    INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2025, 17 (01): : 37 - 46
  • [30] Predictive Modeling of HR Dynamics Using Machine Learning
    Birzniece, Ilze
    Andersone, Ilze
    Nikitenko, Agris
    Zvirbule, Liga
    PROCEEDINGS OF 2022 7TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2022, 2022, : 17 - 23