Optimizing the predictive power of depression screenings using machine learning

被引:2
|
作者
Terhorst, Yannik [1 ,4 ]
Sander, Lasse B. [2 ]
Ebert, David D. [3 ]
Baumeister, Harald [1 ]
机构
[1] Univ Ulm, Inst Psychol & Educ, Dept Clin Psychol & Psychotherapy, Ulm, Germany
[2] Univ Freiburg, Fac Med, Med Psychol & Med Sociol, Freiburg, Germany
[3] Tech Univ Munich, Chair Psychol & Digital Mental Hlth Care, Dept Sport & Hlth Sci, Munich, Germany
[4] Univ Ulm, Inst Psychol & Educ, Dept Clin Psychol & Psychotherapy, Lise Meitner Str 16, D-89081 Ulm, Germany
来源
DIGITAL HEALTH | 2023年 / 9卷
关键词
Major depressive disorder; diagnosis; machine learning; digital health; health care; 16-ITEM QUICK INVENTORY; RATING-SCALE; HEALTH-CARE; PSYCHOMETRIC EVALUATION; OUTCOMES MEASUREMENT; SYMPTOMATOLOGY; SEVERITY; CLASSIFICATION; VALIDATION; PHQ-9;
D O I
10.1177/20552076231194939
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective: Mental health self-report and clinician-rating scales with diagnoses defined by sum-score cut-offs are often used for depression screening. This study investigates whether machine learning (ML) can detect major depressive episodes (MDE) based on screening scales with higher accuracy than best-practice clinical sum-score approaches. Methods: Primary data was obtained from two RCTs on the treatment of depression. Ground truth were DSM 5 MDE diagnoses based on structured clinical interviews (SCID) and PHQ-9 self-report, clinician-rated QIDS-16, and HAM-D-17 were predictors. ML models were trained using 10-fold cross-validation. Performance was compared against best-practice sum-score cut-offs. Primary outcome was the Area Under the Curve (AUC) of the Receiver Operating Characteristic curve. DeLong's test with bootstrapping was used to test for differences in AUC. Secondary outcomes were balanced accuracy, precision, recall, F1-score, and number needed to diagnose (NND). Results: A total of k = 1030 diagnoses (no diagnosis: k = 775; MDE: k = 255) were included. ML models achieved an AUC(QIDS- 16) = 0.94, AUC(HAM- D-17) = 0.88, and AUC(PHQ- 9) = 0.83 in the testing set. ML AUC was significantly higher than sum-score cut-offs for QIDS-16 and PHQ-9 (ps <= 0.01; HAM_D-17: p = 0.847). Applying optimal prediction thresholds, QIDS-16 classifier achieved clinically relevant improvements (Delta balanced accuracy = 8%, Delta F1-score = 14%, Delta NND = 21%). Differences for PHQ_9 and HAM-D-17 were marginal. Conclusions: ML augmented depression screenings could potentially make a major contribution to improving MDE diagnosis depending on questionnaire (e.g., QIDS-16). Confirmatory studies are needed before ML enhanced screening can be implemented into routine care practice.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Predictive Model for Power Consumption Estimation Using Machine Learning
    Aboubakar, Moussa
    Quenel, Ilhem
    Ari, Ado Adamou Abba
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 61 - 65
  • [2] A Sensor Predictive Model for Power Consumption using Machine Learning
    Moocheet, Nalveer
    Jaumard, Brigitte
    Thibault, Pierre
    Eleftheriadis, Lackis
    2023 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING, CLOUDNET, 2023, : 238 - 246
  • [3] Optimizing Predictive Maintenance With Machine Learning for Reliability Improvement
    Ren, Yali
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART B-MECHANICAL ENGINEERING, 2021, 7 (03):
  • [4] Optimizing Power Management in IoT Devices Using Machine Learning Techniques
    Pandey, Arvind Kumar
    Selvakumar, V.
    Lavanya, P.
    Prabha, S. Lakshmi
    Mageshwari, S. Uma
    Naidu, K. Bapayya
    Srivastava, Rachna
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (05) : 2929 - 2940
  • [5] Predictive Model for Classification of Power System Faults using Machine Learning
    Goswami, Tilottama
    Roy, Uponika Barman
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 1881 - 1885
  • [6] Student Achievement Classification using Power Predictive Score with Machine Learning
    Moedjahedy, Jimmy H.
    Pramudya, Gede
    3RD INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (ICORIS 2021), 2021, : 639 - 644
  • [7] Optimizing the Prediction of Depression Remission: A Longitudinal Machine Learning Approach
    Carr, Ewan
    Rietschel, Marcella
    Mors, Ole
    Henigsberg, Neven
    Aitchison, Katherine J.
    Maier, Wolfgang
    Uher, Rudolf
    Farmer, Anne
    Mcguffin, Peter
    Iniesta, Raquel
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2025, 198 (03)
  • [8] Optimizing Cloud Costs with Machine Learning: Predictive Resource Scaling Strategies
    Ponnusamy, Sivakumar
    Khoje, Mandar
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [9] Machine Learning-Based Predictive Modeling of Postpartum Depression
    Shin, Dayeon
    Lee, Kyung Ju
    Adeluwa, Temidayo
    Hur, Junguk
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (09) : 1 - 14
  • [10] A New Methodological Framework for Optimizing Predictive Maintenance Using Machine Learning Combined with Product Quality Parameters
    Riccio, Carlo
    Menanno, Marialuisa
    Zennaro, Ilenia
    Savino, Matteo Mario
    MACHINES, 2024, 12 (07)