Preparation and properties of ultra-high performance lightweight concrete

被引:5
|
作者
Pan, Huimin [1 ,2 ]
Yan, Shuaijun [1 ,2 ]
Zhao, Qingxin [1 ,2 ]
Wang, Dongli [3 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao, Hebei, Peoples R China
[2] Yanshan Univ, Key Lab Green Construct & Intelligent Maintenance, Qinhuangdao, Hebei, Peoples R China
[3] Northeast Petr Univ Qinhuangdao, Qinhuangdao, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
early autogenous shrinkage; hollow glass microspheres; lightweight concrete; UN SDG 11; Sustainable cities and communities; AGE AUTOGENOUS SHRINKAGE; AGGREGATE; STRENGTH; CRACKING; UHPC; COMPOSITE; BEHAVIOR; IMPACT;
D O I
10.1680/jmacr.22.00034
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Based on orthogonal experiments, an ordinary Portland cement (OPC)-fly ash (FA)-silica fume (SF) ternary cementitious material system was developed. The ultra-high-strength lightweight concrete (UHPLC) with a strength exceeding 100 MPa was prepared using pottery sand (PS) and hollow glass microspheres (HGM) as the weight-reducing material and steel fibers as reinforcement. Through workability, apparent density, strength, and early autogenous shrinkage tests, as well as SEM examinations, the effect of various material parameters on the basic performance of UHPLC was investigated, and their mechanisms were explored. The results revealed the optimal mix ratio of OPC : FA : SF : PS : HGM = 1 : 0.200 : 0.133 : 0.533 : 0.067, a water-binder ratio of 0.16, and a volume ratio of steel fibers of 2%. Under steam curing at 90 degrees C for 48 h, the prepared UHPLC had an apparent density of 2031 kg/m(3), compressive/flexural strengths of 112/16 MPa, a slump/expansion of 260/590 mm, and specific strength of 0.055, achieving the goal of light weight and high strength. As the filler of composite materials, HGM can achieve lightweight and high strengthening of cement-based materials. HGM had a large water demand, increasing the autogenous shrinkage of UHPLC to a certain extent. The incorporation of steel fibers significantly increased the strength and apparent density of UHPLC, and its high elastic modulus inhibited the UHPLC shrinkage.
引用
收藏
页码:310 / 323
页数:14
相关论文
共 50 条
  • [31] Study on the mechanical and rheological properties of ultra-high performance concrete
    Chen, Ying
    Liu, Peng
    Sha, Fei
    Yin, Jian
    He, Sasa
    Li, Qianghui
    Yu, Zhiwu
    Chen, Hailong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 111 - 124
  • [32] Experimental Study on Tensile Properties of Ultra-high Performance Concrete
    Fang Z.
    Zhou T.
    Liu L.
    Hu R.
    Huang Z.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (05): : 157 - 165
  • [33] Mechanical Properties of Ultra-high Performance Concrete with Recycled Sand
    Ge X.
    Chu H.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2020, 23 (04): : 810 - 815
  • [34] Mechanical properties of recycled sand ultra-high performance concrete
    Zhang Z.
    Cai Z.
    Li L.
    Yu K.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2022, 39 (11): : 5158 - 5169
  • [35] Advances in the mechanical properties of ultra-high performance concrete (UHPC)
    Chen, JianKang
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2024, 54 (05)
  • [36] Design and preparation of ultra-high performance concrete with low environmental impact
    Shi, Ye
    Long, Guangcheng
    Ma, Cong
    Xie, Youjun
    He, Jionghuang
    JOURNAL OF CLEANER PRODUCTION, 2019, 214 : 633 - 643
  • [37] Preparation of Ultra-high Performance Concrete Using Phosphorous Slag Powder
    Peng, Yanzhou
    Huang, Jin
    Ke, Jin
    ARCHITECTURE, BUILDING MATERIALS AND ENGINEERING MANAGEMENT, PTS 1-4, 2013, 357-360 : 588 - +
  • [38] Ultra-high performance concrete versus ultra-high performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment
    Abdellatief, Mohamed
    Abd Elrahman, Mohamed
    Abadel, Aref A.
    Wasim, Muhammad
    Tahwia, Ahmed
    JOURNAL OF BUILDING ENGINEERING, 2023, 79
  • [39] Water desorption characteristics of saturated lightweight fine aggregate in ultra-high performance concrete
    Shen, Peiliang
    Lu, Linnu
    Wang, Fazhou
    He, Yongjia
    Hu, Shuguang
    Lu, Jianxin
    Zheng, Haibing
    CEMENT & CONCRETE COMPOSITES, 2020, 106
  • [40] Fracture behavior of ultra-high performance lightweight concrete: In situ investigations using μ-CT
    Umbach, Cristin
    Middendorf, Bernhard
    ce/papers, 2023, 6 (06) : 875 - 881