Multiparameter tests of general relativity using a principle component analysis with next-generation gravitational-wave detectors

被引:6
|
作者
Datta, Sayantani [1 ]
Saleem, M. [2 ]
Arun, K. G. [1 ]
Sathyaprakash, B. S. [3 ,4 ,5 ]
机构
[1] Chennai Math Inst, Siruseri 603103, India
[2] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[3] Penn State Univ, Inst Gravitat & Cosmos, Dept Phys, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[5] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales
基金
美国国家科学基金会;
关键词
POST-NEWTONIAN SOURCES; COMPACT BINARIES; PARAMETERS; RADIATION; TAILS;
D O I
10.1103/PhysRevD.109.044036
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Principal component analysis (PCA) is an efficient tool to optimize multiparameter tests of general relativity (GR), wherein one looks for simultaneous deviations in multiple post-Newtonian phasing coefficients. This is accomplished by introducing non-GR deformation parameters in the phase evolution of the gravitational-wave templates used in the analysis. A PCA is performed to construct the "best-measured" linear combinations of the deformation parameters. This helps to set stringent limits on deviations from GR and to more readily detect possible beyond-GR physics. In this paper, we study the effectiveness of this method with the proposed next-generation gravitational-wave detectors, Cosmic Explorer (CE) and Einstein Telescope (ET). For compact binaries at a luminosity distance of 500 Mpc and the detector-frame total mass in the range 20-200M circle dot, CE can measure the most dominant linear combination with a 1-sigma uncertainty -0.1% and the next two subdominant linear combinations with a 1-sigma uncertainty of <= 10%. For a specific range of masses, constraints from ET are better by a factor of a few than CE. This improvement is because of the improved low frequency sensitivity of ET compared to CE (between 1-7 Hz). In addition, we explain the sensitivity of the PCA parameters to the different post-Newtonian deformation parameters and discuss their variation with total mass. We also discuss a criterion for quantifying the number of most dominant linear combinations that capture the information in the signal up to a threshold.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Nonlinear quasinormal mode detectability with next-generation gravitational wave detectors
    Yi, Sophia
    Kuntz, Adrien
    Barausse, Enrico
    Berti, Emanuele
    Cheung, Mark Ho-Yeuk
    Kritos, Konstantinos
    Maselli, Andrea
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [32] Potential impact of noise correlation in next-generation gravitational wave detectors
    Wong, Isaac C. F.
    Pang, Peter T. H.
    Wils, Milan
    Cireddu, Francesco
    Del Pozzo, Walter
    Li, Tjonnie G. F.
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [33] Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors
    Gair, Jonathan R.
    Vallisneri, Michele
    Larson, Shane L.
    Baker, John G.
    LIVING REVIEWS IN RELATIVITY, 2013, 16
  • [34] Cosmic Explorer: A Next-Generation Ground-Based Gravitational-Wave Observatory
    Hall, Evan D.
    GALAXIES, 2022, 10 (04):
  • [35] Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors
    Jonathan R. Gair
    Michele Vallisneri
    Shane L. Larson
    John G. Baker
    Living Reviews in Relativity, 2013, 16
  • [36] Analysis of the gravitational wave background using gamma-ray pulsar timing arrays with next-generation detectors
    Xie, Zhen
    Zhang, Zhipeng
    Wang, Jieshuang
    Yang, Ruizhi
    PHYSICAL REVIEW D, 2023, 108 (08)
  • [37] Searching for cosmological stochastic backgrounds by notching out resolvable compact binary foregrounds with next-generation gravitational-wave detectors
    Zhong, Haowen
    Zhou, Bei
    Reali, Luca
    Berti, Emanuele
    Mandic, Vuk
    PHYSICAL REVIEW D, 2024, 110 (06)
  • [38] A novel Real-time Control System for next generation gravitational-wave detectors
    Prosperi, Paolo
    Gennai, Alberto
    Passuello, Diego
    Spada, Francesca Romana
    Pilo, Federico
    Frasconi, Franco
    Piendibene, Marco
    Bitossi, Massimiliano
    Boschi, Valerio
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2024, 1069
  • [39] Einstein-Podolsky-Rosen conditional squeezing for next generation Gravitational-Wave detectors
    De Marco, F.
    Di Pace, S.
    Ahn, H.
    Ali, W.
    Bawaj, M.
    Chiarini, G.
    Garaventa, B.
    Kim, C. H.
    Kim, Y.
    Kim, K.
    Lee, S.
    Naticchioni, L.
    Park, J. G.
    De Laurentis, M.
    Sorrentino, F.
    Pak, S.
    Lee, S.
    Sequino, V.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2025, 1070
  • [40] Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors
    Steinke, Michael
    Tuennermann, Henrik
    Kuhn, Vincent
    Theeg, Thomas
    Karow, Malte
    de Varona, Omar
    Jahn, Philipp
    Booker, Phillip
    Neumann, Joerg
    Wessels, Peter
    Kracht, Dietmar
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (03)