Multiparameter tests of general relativity using a principle component analysis with next-generation gravitational-wave detectors

被引:6
|
作者
Datta, Sayantani [1 ]
Saleem, M. [2 ]
Arun, K. G. [1 ]
Sathyaprakash, B. S. [3 ,4 ,5 ]
机构
[1] Chennai Math Inst, Siruseri 603103, India
[2] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[3] Penn State Univ, Inst Gravitat & Cosmos, Dept Phys, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[5] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales
基金
美国国家科学基金会;
关键词
POST-NEWTONIAN SOURCES; COMPACT BINARIES; PARAMETERS; RADIATION; TAILS;
D O I
10.1103/PhysRevD.109.044036
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Principal component analysis (PCA) is an efficient tool to optimize multiparameter tests of general relativity (GR), wherein one looks for simultaneous deviations in multiple post-Newtonian phasing coefficients. This is accomplished by introducing non-GR deformation parameters in the phase evolution of the gravitational-wave templates used in the analysis. A PCA is performed to construct the "best-measured" linear combinations of the deformation parameters. This helps to set stringent limits on deviations from GR and to more readily detect possible beyond-GR physics. In this paper, we study the effectiveness of this method with the proposed next-generation gravitational-wave detectors, Cosmic Explorer (CE) and Einstein Telescope (ET). For compact binaries at a luminosity distance of 500 Mpc and the detector-frame total mass in the range 20-200M circle dot, CE can measure the most dominant linear combination with a 1-sigma uncertainty -0.1% and the next two subdominant linear combinations with a 1-sigma uncertainty of <= 10%. For a specific range of masses, constraints from ET are better by a factor of a few than CE. This improvement is because of the improved low frequency sensitivity of ET compared to CE (between 1-7 Hz). In addition, we explain the sensitivity of the PCA parameters to the different post-Newtonian deformation parameters and discuss their variation with total mass. We also discuss a criterion for quantifying the number of most dominant linear combinations that capture the information in the signal up to a threshold.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multiparameter Tests of General Relativity Using Multiband Gravitational-Wave Observations
    Gupta, Anuradha
    Datta, Sayantani
    Kastha, Shilpa
    Borhanian, Ssohrab
    Arun, K. G.
    Sathyaprakash, B. S.
    PHYSICAL REVIEW LETTERS, 2020, 125 (20)
  • [2] Metrics for next-generation gravitational-wave detectors
    Hall, Evan D.
    Evans, Matthew
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (22)
  • [3] Astrophysical science metrics for next-generation gravitational-wave detectors
    Adhikari, R. X.
    Ajith, P.
    Chen, Y.
    Clark, J. A.
    Dergachev, V
    Fotopoulos, N., V
    Gossan, S. E.
    Mandel, I
    Okounkova, M.
    Raymond, V
    Read, J. S.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (24)
  • [4] Intracavity signal amplification system for next-generation gravitational-wave detectors
    Somiya, K.
    Suzuki, K.
    Otabe, S.
    Harada, K.
    PHYSICAL REVIEW D, 2023, 107 (12)
  • [5] Curvature Dependence of Gravitational-Wave Tests of General Relativity
    Payne, Ethan
    Isi, Maximiliano
    Chatziioannou, Katerina
    Lehner, Luis
    Chen, Yanbei
    Farr, Will M.
    PHYSICAL REVIEW LETTERS, 2024, 133 (25)
  • [6] Next-generation gravitational-wave detectors require even better mirror coatings
    不详
    LASER FOCUS WORLD, 2019, 55 (07): : 9 - 9
  • [7] Cosmography with next-generation gravitational wave detectors
    Chen, Hsin-Yu
    Ezquiaga, Jose Maria
    Gupta, Ish
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (12)
  • [8] Accelerating tests of general relativity with gravitational-wave signals using hybrid sampling
    Wolfe, Noah E.
    Talbot, Colm
    Golomb, Jacob
    PHYSICAL REVIEW D, 2023, 107 (10)
  • [9] Quantum gravitational signatures in next-generation gravitational wave detectors
    Das, Saurya
    Shankaranarayanan, S.
    Todorinov, Vasil
    PHYSICS LETTERS B, 2022, 835
  • [10] Laser frequency noise in next generation gravitational-wave detectors
    Cahillane, Craig
    Mansell, Georgia L.
    Sigg, Daniel
    OPTICS EXPRESS, 2021, 29 (25) : 42144 - 42161