PillarNet plus plus : Pillar-Based 3-D Object Detection With Multiattention

被引:2
|
作者
Guo, Dongbing [1 ,2 ]
Yang, Guohui [3 ]
Wang, Chunhui [1 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Tunable Laser Technol, Harbin 150001, Peoples R China
[2] Shanxi Data Technol Co Ltd, Taiyuan 030032, Peoples R China
[3] Harbin Inst Technol, Sch Elect & Informat Engn, Dept Microwave Engn, Harbin 150001, Peoples R China
关键词
3-D object detection; autonomous driving; light detection and ranging (LiDAR); multiattention;
D O I
10.1109/JSEN.2023.3323368
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Light detection and ranging (LiDAR)-based 3-D object detection constitutes a fundamental component of autonomous driving technology. In this research, we propose a novel approach called PillarNet++ to tackle the challenges associated with fine-grained information loss during point cloud encoding and the inadequate interaction or incomplete fusion of feature maps across different scales in subsequent feature extraction stages, resulting in a decrease in partial occlusion and long-distance 3-D object detection accuracy, leading to false and missed detections. The PillarNet++ method primarily comprises two modules: the multiattention-pillar-encoding (MAPE) module and the pseudo-image-split-multibranch-feature-pyramid-network (PSMB-FPN) module. The MAPE module enhances the information extraction capability in nonempty pillars by integrating max pooling and average pooling, by fusion of the pointwise, channelwise, and pillarwise attention; the MAPE module can adaptively focus on the important information and suppress the secondary point clouds. In addition, the stacked MAPE modules can refine pillars and extract finer features. On the other hand, the PSMB-FPN module splits the pseudo-image along the channel dimension and subsequently performs MB-FPN feature extraction and fusion on each channel, facilitating the interaction of multiscale and multilevel feature maps and improving prediction accuracy. Experimental results on the KITTI 3-D object detection benchmark show that the PillarNet++ method has the best performance among single-stage object detection algorithms and even exceeds most two-stage methods.
引用
收藏
页码:27733 / 27743
页数:11
相关论文
共 50 条
  • [21] PV-RCNN plus plus : semantical point-voxel feature interaction for 3D object detection
    Wu, Peng
    Gu, Lipeng
    Yan, Xuefeng
    Xie, Haoran
    Wang, Fu Lee
    Cheng, Gary
    Wei, Mingqiang
    VISUAL COMPUTER, 2023, 39 (06): : 2425 - 2440
  • [22] CrossDet plus plus : Growing Crossline Representation for Object Detection
    Qiu, Heqian
    Li, Hongliang
    Wu, Qingbo
    Cui, Jianhua
    Song, Zichen
    Wang, Lanxiao
    Zhang, Minjian
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (03) : 1093 - 1108
  • [23] 3-D hydro plus cascade model at RHIC
    Nonaka, Chiho
    Bass, Steffen A.
    NUCLEAR PHYSICS A, 2006, 774 : 873 - 876
  • [24] A Holistic Review of Lake Rawapening Management Practices, Indonesia: Pillar-Based and Object-Based Management
    Mardiatno, Djati
    Faridah, Faridah
    Listyaningrum, Noviyanti
    Hastari, Nur Rizki Fitri
    Rhosadi, Iwan
    da Costa, Apolonia Diana Sherly
    Rahmadana, Aries Dwi Wahyu
    Lisan, Ahmad Rif'an Khoirul
    Sunarno, Sunarno
    Setiawan, Muhammad Anggri
    WATER, 2023, 15 (01)
  • [25] PointDet plus plus : an object detection framework based on human local features with transformer encoder
    Tang, Yudi
    Wang, Bing
    He, Wangli
    Qian, Feng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (14): : 10097 - 10108
  • [26] Design and Fabrication of a Pillar-Based Piezoelectric Microphone Exploiting 3D-Printing Technology
    Ricci Y.
    Sorrentino A.
    La Torraca P.
    Cattani L.
    Cotogno M.
    Cantarella G.
    Orazi L.
    Castagnetti D.
    Lugli P.
    Larcher L.
    IEEE Sensors Letters, 2021, 5 (02):
  • [27] Numerical observer studies comparing FORE plus AWOSEM, FORE plus NECOSEM, and NEC based fully 3-D OSEM for 3-D whole-body PET imaging
    Janeiro, L.
    Comtat, C.
    Lartizien, C.
    Kinahan, P. E.
    Michel, C.
    Trebossen, R.
    Almeida, P.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (03) : 1194 - 1199
  • [28] 3-D HANet: A Flexible 3-D Heatmap Auxiliary Network for Object Detection
    Xia, Qiming
    Chen, Yidong
    Cai, Guorong
    Chen, Guikun
    Xie, Daoshun
    Su, Jinhe
    Wang, Zongyue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Segmentation of tobacco shred point cloud and 3-D measurement based on improved PointNet plus plus network with DTC algorithm
    Wang, Yihang
    Zheng, Haiwei
    Yang, Jie
    Wang, Yan
    Wang, Li
    Niu, Qunfeng
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [30] PoseSDF plus plus : Point Cloud-Based 3-D Human Pose Estimation via Implicit Neural Representation
    Yang, Jianxin
    Liu, Yuxuan
    Li, Jinkai
    Gu, Xiao
    Yang, Guang-Zhong
    Guo, Yao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2689 - 2698