EDC-DTI: An end-to-end deep collaborative learning model based on multiple information for drug-target interactions prediction

被引:6
|
作者
Yuan, Yongna [1 ,5 ]
Zhang, Yuhao [1 ]
Meng, Xiangbo [1 ]
Liu, Zhenyu [3 ]
Wang, Bohan [1 ]
Miao, Ruidong [2 ]
Zhang, Ruisheng [1 ]
Su, Wei
Liu, Lei [4 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, South Tianshui Rd, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Sch Life Sci, South Tianshui Rd, Lanzhou 730000, Gansu, Peoples R China
[3] Gansu Univ Polit Sci & Law, Sch Cyberspace Secur, Anning West Rd, Lanzhou 730070, Gansu, Peoples R China
[4] Duzhe Publishing Grp Co Ltd, DuZhe Rd, Lanzhou 730000, Gansu, Peoples R China
[5] Lanzhou Univ, Lanzhou 730000, Gansu, Peoples R China
关键词
DTIs prediction; Deep learning; Graph attention network; Heterogeneous network; IDENTIFICATION; SIMVASTATIN; SIMILARITY; NETWORKS; EFFICACY; ABCB1; GENE;
D O I
10.1016/j.jmgm.2023.108498
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Innovations in drug-target interactions (DTIs) prediction accelerate the progression of drug development. The introduction of deep learning models has a dramatic impact on DTIs prediction, with a distinct influence on saving time and money in drug discovery. This study develops an end-to-end deep collaborative learning model for DTIs prediction, called EDC-DTI, to identify new targets for existing drugs based on multiple drug -target-related information including homogeneous information and heterogeneous information by the way of deep learning. Our end-to-end model is composed of a feature builder and a classifier. Feature builder consists of two collaborative feature construction algorithms that extract the molecular properties and the topology property of networks, and the classifier consists of a feature encoder and a feature decoder which are designed for feature integration and DTIs prediction, respectively. The feature encoder, mainly based on the improved graph attention network, incorporates heterogeneous information into drug features and target features separately. The feature decoder is composed of multiple neural networks for predictions. Compared with six popular baseline models, EDC-DTI achieves highest predictive performance in the case of low computational costs. Robustness tests demonstrate that EDC-DTI is able to maintain strong predictive performance on sparse datasets. As well, we use the model to predict the most likely targets to interact with Simvastatin (DB00641), Nifedipine (DB01115) and Afatinib (DB08916) as examples. Results show that most of the predictions can be confirmed by literature with clear evidence.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Deep Learning End-to-End Approach for the Prediction of Tinnitus based on EEG Data
    Allgaier, Johannes
    Neff, Patrick
    Schlee, Winfried
    Schoisswohl, Stefan
    Pryss, Ruediger
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 816 - 819
  • [22] End-to-end learning for compound activity prediction based on binding pocket information
    Tanebe, Toshitaka
    Ishida, Takashi
    BMC BIOINFORMATICS, 2021, 22 (SUPPL 3)
  • [23] End-to-end learning for compound activity prediction based on binding pocket information
    Toshitaka Tanebe
    Takashi Ishida
    BMC Bioinformatics, 22
  • [24] Accurate prediction of drug-target interactions in Chinese and western medicine by the CWI-DTI model
    Li, Ying
    Zhang, Xingyu
    Chen, Zhuo
    Yang, Hongye
    Liu, Yuhui
    Wang, Huiqing
    Yan, Ting
    Xiang, Jie
    Wang, Bin
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] DeepDrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction
    Yin, Qijin
    Fan, Rui
    Cao, Xusheng
    Liu, Qiao
    Jiang, Rui
    Zeng, Wanwen
    QUANTITATIVE BIOLOGY, 2023, 11 (03) : 260 - 274
  • [26] GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph
    Zhu, Yongdi
    Ning, Chunhui
    Zhang, Naiqian
    Wang, Mingyi
    Zhang, Yusen
    BMC BIOLOGY, 2024, 22 (01)
  • [27] A deep learning method for drug-target affinity prediction based on sequence interaction information mining
    Jiang, Mingjian
    Shao, Yunchang
    Zhang, Yuanyuan
    Zhou, Wei
    Pang, Shunpeng
    PEERJ, 2023, 11
  • [28] A deep learning method for drug-target affinity prediction based on sequence interaction information mining
    Jiang, Mingjian
    Shao, Yunchang
    Zhang, Yuanyuan
    Zhou, Wei
    Pang, Shunpeng
    PEERJ, 2023, 11
  • [29] DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph
    Shao, Kanghao
    Zhang, Yunhao
    Wen, Yuqi
    Zhang, Zhongnan
    He, Song
    Bo, Xiaochen
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (03)
  • [30] Identifying potential drug-target interactions based on ensemble deep learning
    Zhou, Liqian
    Wang, Yuzhuang
    Peng, Lihong
    Li, Zejun
    Luo, Xueming
    FRONTIERS IN AGING NEUROSCIENCE, 2023, 15