Integrated supercapacitor with self-healing, arbitrary deformability and anti-freezing based on gradient interface structure from electrode to electrolyte

被引:12
|
作者
Qin, Gang [1 ]
Liu, Yongcun [1 ]
Zhang, Wenye [1 ]
He, Wenjie [1 ]
Su, Xiaoxiang [1 ]
Lv, Qianqian [1 ]
Yu, Xiang [2 ]
Chen, Qiang [3 ]
Yang, Jia [1 ]
机构
[1] Henan Polytech Univ, Sch Mat Sci & Engn, Jiaozuo 454003, Peoples R China
[2] Henan Univ Engn, Coll Mat Engn, Zhengzhou 454000, Peoples R China
[3] Univ Chinese Acad Sci, Wenzhou Inst, Wenzhou 352001, Peoples R China
基金
中国博士后科学基金;
关键词
Gel polymer electrolyte; Integrated supercapacitor; Dual redox; Gradient interface structure; Multiple cross-linking; FLEXIBLE SUPERCAPACITOR; HYDROGEL; PERFORMANCE; CARBON;
D O I
10.1016/j.jcis.2022.12.164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible supercapacitors have attracted more and more attention because of their promising applications in wearable electronics, however, it is still important to harmonize their mechanical and electrochemical properties for practical applications. In the present work, a seamless transition between polyaniline (PANI) electrode and NH4VO3_FeSO4 dual redox-mediated gel polymer electrolyte (GPE) is presented through in situ formation of gradient interface structure. Multiple physical interactions make the GPE excellent mechanical and self-healing properties. Meanwhile, double role functions of Fe2+ ions greatly relieve the traditional contradiction between mechanical and electrochemical properties of GPE. Moreover, benefiting from the structure and reversible redox reactions of VO3-and Fe2+, the integrated supercapacitor delivers an exceptional specific capacitance of 441.8 mF/cm2, a high energy density of 63.1 lWh/cm2, remarkable cyclic stability. Simultaneously, the gradient structure from PANI electrode to GPE greatly improves the electrode/electrolyte interface compatibility and ion transport, which endows the supercapacitor with stable electrochemical performance. Furthermore, the supercapacitor well-maintains the specific capacitance even at-20 degrees C with over 89.19 % retention after 6 cutting/healing cycles. The gradient interface structure design will promote the development of high-performance supercapacitor. (c) 2022 Published by Elsevier Inc.
引用
收藏
页码:427 / 440
页数:14
相关论文
共 50 条
  • [21] Stretchable, self-healing, adhesive and anti-freezing ionic conductive cellulose-based hydrogels for flexible supercapacitors and sensors
    Lizhi Chen
    Hongyan Yin
    Fangfei Liu
    Tursun Abdiryim
    Feng Xu
    Jiangan You
    Jiaying Chen
    Xinyu Jing
    Yancai Li
    Mengyao Su
    Xiong Liu
    Cellulose, 2024, 31 (18) : 11015 - 11033
  • [22] Self-healing, anti-freezing and highly stretchable polyurethane ionogel as ionic skin for wireless strain sensing
    Xu, Junhuai
    Wang, Hui
    Du, Xiaosheng
    Cheng, Xu
    Du, Zongliang
    Wang, Haibo
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [23] Phytic acid extracted cellulose nanocrystals for designing self-healing and anti-freezing hydrogels' flexible sensor
    Yang, Chenglin
    Liu, Jiarui
    Liu, Pengxiao
    Wang, Wenxiang
    Chen, Hou
    Bai, Liangjiu
    Yang, Huawei
    Yang, Lixia
    Wei, Donglei
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [25] Self-healing, anti-freezing and highly stretchable polyurethane ionogel as ionic skin for wireless strain sensing
    Xu, Junhuai
    Wang, Hui
    Du, Xiaosheng
    Cheng, Xu
    Du, Zongliang
    Wang, Haibo
    Chemical Engineering Journal, 2021, 426
  • [26] Self-Healing, Anti-Freezing Hydrogels and Its Application in Diversified Skin-Like Electronic Sensors
    Abodurexiti, Ayinuer
    Maimaitiyiming, Xieraili
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 12588 - 12594
  • [27] Self-healing and anti-freezing graphene-hydrogel-graphene sandwich strain sensor with ultrahigh sensitivity†
    Wu, Lu
    Fan, Mingshuai
    Qu, Meijie
    Yang, Shuaitao
    Nie, Jia
    Tang, Ping
    Pan, Lujun
    Wang, Hai
    Bin, Yuezhen
    JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (13) : 3088 - 3096
  • [28] An innovative poly(ionic liquid) hydrogel-based anti-freezing electrolyte with high conductivity for supercapacitor
    He, Xinping
    Zhuang, Tianyi
    Ruan, Shuai
    Xia, Xinhui
    Xia, Yang
    Zhang, Jun
    Huang, Hui
    Gan, Yongping
    Zhang, Wenkui
    CHEMICAL ENGINEERING JOURNAL, 2023, 466
  • [29] Ultrafast gelation of multifunctional β-cyclodextrin based hydrogel electrolyte for self-healing supercapacitor
    Li, Ying
    Xin, Qing
    Yang, Guoqing
    Liang, Shangqing
    Lin, Jun
    Zhang, Dong
    JOURNAL OF ENERGY STORAGE, 2024, 95
  • [30] Highly adhesive, self-healing, anti-freezing and anti-drying organohydrogel with self-power and mechanoluminescence for multifunctional flexible sensor
    Zhou, Zixuan
    Liu, Kehan
    Ban, Ziyue
    Yuan, Weizhong
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2022, 154