Machine learning coarse-grained potentials of protein thermodynamics

被引:20
|
作者
Majewski, Maciej [1 ,2 ]
Perez, Adria [1 ,2 ]
Tholke, Philipp [1 ]
Doerr, Stefan [2 ]
Charron, Nicholas E. [3 ,4 ,5 ]
Giorgino, Toni [6 ]
Husic, Brooke E. [7 ,8 ,9 ,10 ]
Clementi, Cecilia [3 ,4 ,5 ,11 ]
Noe, Frank [5 ,7 ,11 ,12 ]
De Fabritiis, Gianni [1 ,2 ,13 ]
机构
[1] Univ Pompeu Fabra, Sci Computat Lab, Biomed Res Pk PRBB,Carrer Dr Aiguader 88, Barcelona 08003, Spain
[2] Acellera Labs, Doctor Trueta 183, Barcelona 08005, Spain
[3] Rice Univ, Dept Phys, Houston, TX 77005 USA
[4] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[5] FU Berlin, Dept Phys, Arnimallee 12, D-14195 Berlin, Germany
[6] Natl Res Council CNR IBF, Inst Biophys, I-20133 Milan, Italy
[7] FU Berlin, Dept Mathe & Comp Sci, Arnimallee 12, D-14195 Berlin, Germany
[8] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
[9] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08540 USA
[10] Princeton Univ, Ctr Phys Biol Funct, Princeton, NJ 08540 USA
[11] Rice Univ, Dept Chem, Houston, TX 77005 USA
[12] Microsoft Res AI4Sci, Karl Liebknecht Str 32, D-10178 Berlin, Germany
[13] Inst Catalana Recerca & Estudis Avancats ICR, Passeig Lluis Companys 23, Barcelona 08010, Spain
基金
美国国家卫生研究院; 欧洲研究理事会; 美国国家科学基金会; 欧盟地平线“2020”;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; FORCE-FIELD; STRUCTURE PREDICTION; ENERGY LANDSCAPES; STATE MODELS; PERSPECTIVE; KINETICS;
D O I
10.1038/s41467-023-41343-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Machine learning coarse-grained potentials of protein thermodynamics
    Maciej Majewski
    Adrià Pérez
    Philipp Thölke
    Stefan Doerr
    Nicholas E. Charron
    Toni Giorgino
    Brooke E. Husic
    Cecilia Clementi
    Frank Noé
    Gianni De Fabritiis
    Nature Communications, 14
  • [2] Determination of Protein Coarse-Grained Potentials by Machine Learning Approaches
    Vazquez, Eric
    Thomas, Rachel
    Zamora-Resendiz, Rafael
    Tang, Yu-Hang
    Watanabe, Masakatsu
    Crivelli, Silvia
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 180A - 180A
  • [3] Learning Coarse-Grained Potentials for Binary Fluids
    Gao, Peiyuan
    Yang, Xiu
    Tartakovsky, Alexandre M.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (08) : 3731 - 3745
  • [4] Dynamics and thermodynamics of the coronene octamer described by coarse-grained potentials
    Hernandez-Rojas, J.
    Calvo, F.
    Niblett, S.
    Wales, D. J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (03) : 1884 - 1895
  • [5] Machine learning coarse-grained model for water
    Chan, Henry
    Cherukara, Mathew
    Narayanan, Badri
    Loeffler, Troy
    Benmore, Chris
    Gray, Stephen
    Sankaranarayanan, Subramanian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [6] Hierarchical Machine Learning of Low-Resolution Coarse-Grained Free Energy Potentials
    Izvekov, Sergei
    Rice, Betsy M.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4436 - 4450
  • [7] Predicting Protein–protein Association Rates using Coarse-grained Simulation and Machine Learning
    Zhong-Ru Xie
    Jiawen Chen
    Yinghao Wu
    Scientific Reports, 7
  • [8] Top-Down Machine Learning of Coarse-Grained Protein Force Fields
    Navarro, Carles
    Majewski, Maciej
    De Fabritiis, Gianni
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (21) : 7518 - 7526
  • [9] Scientific Machine Learning for Coarse-Grained Constitutive Models
    Gonzalez, David
    Chinesta, Francisco
    Cueto, Elias
    23RD INTERNATIONAL CONFERENCE ON MATERIAL FORMING, 2020, 47 : 693 - 695
  • [10] Enhancing Coarse-Grained Models through Machine Learning
    Karmakar, Tarak
    Soares, Thereza A.
    Merz Jr, Kenneth M.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (08) : 2931 - 2932