ADARNet: Deep Learning Predicts Adaptive Mesh Refinement

被引:0
|
作者
Obiols-Sales, Octavi [1 ]
Vishnu, Abhinav [2 ]
Malaya, Nicholas [2 ]
Chandramowlishwaran, Aparna [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92717 USA
[2] Adv Micro Devices Inc, Austin, TX USA
基金
美国国家科学基金会;
关键词
Physics-informed machine learning; adaptive mesh refinement; super-resolution; turbulent flows;
D O I
10.1145/3605573.3605654
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep Learning (DL) algorithms have gained popularity for super-resolution tasks - reconstructing a high-resolution (HR) output from its low-resolution (LR) counterpart. However, current DL approaches, both in computer vision and computational fluid dynamics (CFD), perform spatially uniform super-resolution. Therefore, DL for CFD approaches often over-resolve regions of the LR input that are already accurate at low numerical precision. This hardware over-utilization limits their scalability. To address this limitation, we propose ADARNet, a DL-based adaptive mesh refinement (AMR) framework. ADARNet takes a LR image as input and outputs its non-uniform HR counterpart, predicting HR only in areas that require higher numerical accuracy. As a result, ADARNet predicts the target 1024 x 1024 solution 7- 28.5x faster than state-of-the-art DL methods and reduces the memory usage by 4.4 - 7.65 x while maintaining the same level of accuracy. Moreover, unlike traditional AMR solvers that refine the mesh iteratively, ADARNet is a one-shot method that accelerates it by 2.6 - 4.5x.
引用
收藏
页码:524 / 534
页数:11
相关论文
共 50 条
  • [41] Lessons for adaptive mesh refinement in numerical relativity
    Radia, Miren
    Sperhake, Ulrich
    Drew, Amelia
    Clough, Katy
    Figueras, Pau
    Lim, Eugene A.
    Ripley, Justin L.
    Aurrekoetxea, Josu C.
    Franca, Tiago
    Helfer, Thomas
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (13)
  • [42] Adaptive mesh refinement for MHD fusion applications
    Samtaney, R
    Jardin, SC
    Colella, P
    Martin, DF
    ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 491 - 503
  • [43] Adaptive mesh refinement for magnetic stimulation modeling
    Sawicki, Bartosz
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 152 - 154
  • [44] Adaptive mesh refinement for multiscale nonequilibrium physics
    Martin, DF
    Colella, P
    Anghel, M
    Alexander, FJ
    COMPUTING IN SCIENCE & ENGINEERING, 2005, 7 (03) : 24 - 31
  • [45] LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS
    BERGER, MJ
    COLELLA, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) : 64 - 84
  • [46] Visualization of scalar adaptive mesh refinement data
    Weber, G. H.
    Beckner, V. E.
    Childs, H.
    Ligocki, T. J.
    Miller, M. C.
    Van Straaleni, B.
    Bethel, E. W.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2007, 2008, 385 : 309 - +
  • [47] ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS
    Bryan, Greg L.
    Norman, Michael L.
    O'Shea, Brian W.
    Abel, Tom
    Wise, John H.
    Turk, Matthew J.
    Reynolds, Daniel R.
    Collins, David C.
    Wang, Peng
    Skillman, Samuel W.
    Smith, Britton
    Harkness, Robert P.
    Bordner, James
    Kim, Ji-hoon
    Kuhlen, Michael
    Xu, Hao
    Goldbaum, Nathan
    Hummels, Cameron
    Kritsuk, Alexei G.
    Tasker, Elizabeth
    Skory, Stephen
    Simpson, Christine M.
    Hahn, Oliver
    Oishi, Jeffrey S.
    So, Geoffrey C.
    Zhao, Fen
    Cen, Renyue
    Li, Yuan
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (02):
  • [48] On adaptive mesh refinement for atmospheric pollution models
    Constantinescu, EM
    Sandu, A
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 798 - 805
  • [49] GRChombo: Numerical relativity with adaptive mesh refinement
    Clough, Katy
    Figueras, Pau
    Finkel, Hal
    Kunesch, Markus
    Lim, Eugene A.
    Tunyasuvunakool, Saran
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (24)
  • [50] Adaptive mesh refinement/recovery strategy for FEA
    Choi, CK
    Lee, EJ
    Yu, WJ
    STRUCTURAL ENGINEERING AND MECHANICS, 2004, 17 (3-4) : 379 - 391