Machine-learning-aided density functional theory calculations of stacking fault energies in steel

被引:4
|
作者
Samanta, Amit [1 ]
Balaprakash, Prasanna [2 ]
Aubry, Sylvie [3 ]
Lin, Brian K. [4 ]
机构
[1] Lawrence Livermore Natl Lab, Phys Div, Livermore, CA 94550 USA
[2] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
[3] Lawrence Livermore Natl Lab, Mat Sci Div, Livermore, CA 94550 USA
[4] ArcelorMittal Global R&D, East Chicago, IN 46312 USA
关键词
HIGH-STRENGTH STEELS;
D O I
10.1016/j.scriptamat.2023.115862
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A combined large-scale first principles approach with machine learning and materials informatics is proposed to quickly sweep the chemistry-composition space of advanced high strength steels (AHSS). AHSS are composed of iron and key alloying elements such as aluminum and manganese. A systematic exploration of the distribution of aluminum and manganese atoms in iron is used to investigate low stacking fault energies configurations using first principles calculations. To overcome the computational cost of exploring the composition space, this process is sped up using an automated machine learning tool: DeepHyper. Our results predict that it is energetically favorable for Al to stay away from a stacking fault, but Mn atoms do not affect the stacking fault energy and can stay in the vicinity of the fault. The distribution of Al and Mn atoms in systems containing stacking faults and the effects of their interactions on the equilibrium distribution are systematically analyzed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] GENERALISED STACKING FAULT ENERGIES OF COPPER ALLOYS - DENSITY FUNCTIONAL THEORY CALCULATIONS
    Muzyk, M.
    Kurzydlowski, K. J.
    JOURNAL OF MINING AND METALLURGY SECTION B-METALLURGY, 2019, 55 (02) : 271 - 282
  • [2] Generalized Stacking Fault Energies of Aluminum Alloys-Density Functional Theory Calculations
    Muzyk, Marek
    Pakiela, Zbigniew
    Kurzydlowski, Krzysztof J.
    METALS, 2018, 8 (10):
  • [3] Generalized stacking fault energy in magnesium alloys: Density functional theory calculations
    Muzyk, M.
    Pakiela, Z.
    Kurzydlowski, K. J.
    SCRIPTA MATERIALIA, 2012, 66 (05) : 219 - 222
  • [4] The influence of alloying on the stacking fault energy of gold from density functional theory calculations
    Goyal, Anuj
    Li, Yangzhong
    Chernatynskiy, Aleksandr
    Jayashankar, Jay S.
    Kautzky, Michael C.
    Sinnott, Susan B.
    Phillpot, Simon R.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [5] Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy
    Liu, XY
    Ercolessi, F
    Adams, JB
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2004, 12 (04) : 665 - 670
  • [6] Machine Learning Enabled Prediction of Stacking Fault Energies in Concentrated Alloys
    Arora, Gaurav
    Aidhy, Dilpuneet S.
    METALS, 2020, 10 (08) : 1 - 17
  • [7] Machine-learning-aided thermochemical treatment of biomass: a review
    Li, Hailong
    Chen, Jiefeng
    Zhang, Weijin
    Zhan, Hao
    He, Chao
    Yang, Zequn
    Peng, Haoyi
    Leng, Lijian
    BIOFUEL RESEARCH JOURNAL-BRJ, 2023, 10 (01): : 1786 - +
  • [8] Machine-Learning-Aided Optical Fiber Communication System
    Pan, Xiaolong
    Wang, Xishuo
    Tian, Bo
    Wang, Chuxuan
    Zhang, Hongxin
    Guizani, Mohsen
    IEEE NETWORK, 2021, 35 (04): : 136 - 142
  • [9] Machine learning and density functional theory
    Ryan Pederson
    Bhupalee Kalita
    Kieron Burke
    Nature Reviews Physics, 2022, 4 : 357 - 358
  • [10] PSEUDOPOTENTIAL CALCULATIONS OF STACKING-FAULT ENERGIES IN SILICON
    KRAUSE, CW
    PHILOSOPHICAL MAGAZINE, 1976, 33 (01): : 207 - 208