Linear Riley equilibria in quadratic signaling games

被引:0
|
作者
Weng, Xi [1 ]
Wu, Fan [2 ]
Yin, Xundong [3 ]
机构
[1] Peking Univ, Guanghua Sch Management, Beijing, Peoples R China
[2] CALTECH, Div Humanities & Social Sci, Pasadena, CA USA
[3] Cent Univ Finance & Econ, CAPFPP, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Signaling; Riley equilibria; Linear strategy; INCENTIVE COMPATIBILITY; COMMUNICATION; INFORMATION; CONTINUUM;
D O I
10.1016/j.jet.2023.105733
中图分类号
F [经济];
学科分类号
02 ;
摘要
We study signaling games with quadratic payoffs. As signaling games admit multiple separating equilibria, many equilibrium selection rules are proposed and a well-known solution is Riley equilibria. They are separating equilibria in which the sender achieves the highest equilibrium payoff for all types among all separating equilibria. We analyze the conditions for Riley equilibria to be linear, a common assumption in many applications. We derive a sufficient and necessary condition for the existence and uniqueness of linear Riley equilibria. We apply the result to confirm the dominance of linear equilibria in some classic examples, and we show that, in some other examples, there exist previously unknown nonlinear Riley equilibria. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Quadratic Privacy-Signaling Games and Payoff Dominant Equilibria
    Kazikli, Ertan
    Gezici, Sinan
    Yuksel, Serdar
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1367 - 1372
  • [2] Quadratic Multi-Dimensional Signaling Games and Affine Equilibria
    Saritas, Serkan
    Yuksel, Serdar
    Gezici, Sinan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 605 - 619
  • [3] Robust equilibria in indefinite linear-quadratic differential games
    van den Broek, WA
    Engwerda, JC
    Schumacher, JM
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 119 (03) : 565 - 595
  • [4] Robust Equilibria in Indefinite Linear-Quadratic Differential Games
    W. A. van den Broek
    J. C. Engwerda
    J. M. Schumacher
    Journal of Optimization Theory and Applications, 2003, 119 : 565 - 595
  • [5] Feedback Nash equilibria for linear quadratic descriptor differential games
    Engwerda, J. C.
    Salmah
    AUTOMATICA, 2012, 48 (04) : 625 - 631
  • [6] On Multi-Dimensional and Noisy Quadratic Signaling Games and Affine Equilibria
    Saritas, Serkan
    Yuksel, Serdar
    Gezici, Sinan
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5390 - 5395
  • [7] Dynamic signaling games with quadratic criteria under Nash and Stackelberg equilibria
    Saritas, Serkan
    Yuksel, Serdar
    Gezici, Sinan
    AUTOMATICA, 2020, 115 (115)
  • [8] Feedback Nash Equilibria in Linear-Quadratic Difference Games With Constraints
    Reddy, Puduru Viswanadha
    Zaccour, Georges
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 590 - 604
  • [9] Approximate Nash Equilibria for Discrete-Time Linear Quadratic Dynamic Games
    Nortmann, Benita
    Mylvaganam, Thulasi
    IFAC PAPERSONLINE, 2023, 56 (02): : 1760 - 1765
  • [10] Linear Quadratic Mean Field Games: Decentralized O(1/N )-Nash Equilibria
    HUANG Minyi
    YANG Xuwei
    Journal of Systems Science & Complexity, 2021, 34 (05) : 2003 - 2035