Approximate Nash Equilibria for Discrete-Time Linear Quadratic Dynamic Games

被引:1
|
作者
Nortmann, Benita [1 ]
Mylvaganam, Thulasi [1 ]
机构
[1] Imperial Coll London, Dept Aeronaut, London SW7 2AZ, England
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Dynamic games; Feedback Nash equilibrium approximation; Linear systems; DIFFERENTIAL-GAMES;
D O I
10.1016/j.ifacol.2023.10.1886
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is generally challenging to determine Nash equilibrium solutions of nonzerosum dynamic games, even for games characterised by a quadratic cost and linear dynamics, and particularly in the discrete-time, infinite-horizon case. Motivated by this, we propose and characterise a notion of approximate feedback Nash equilibrium solutions for this class of dynamic games, the.a,ss-Nash equilibrium, which provides guarantees on the convergence rate of the trajectories of the resulting closed-loop system. The efficacy of the results is demonstrated via a simulation example involving macroeconomic policy design. Copyright (c) 2023 The Authors. This is an open access article under the CC BY- NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:1760 / 1765
页数:6
相关论文
共 50 条
  • [1] Nash Equilibria for Linear Quadratic Discrete-Time Dynamic Games via Iterative and Data-Driven Algorithms
    Nortmann, Benita
    Monti, Andrea
    Sassano, Mario
    Mylvaganam, Thulasi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (10) : 6561 - 6575
  • [2] Feedback Nash Equilibria for Scalar Two-Player Linear-Quadratic Discrete-Time Dynamic Games
    Nortmann, Benita
    Monti, Andrea
    Sassano, Mario
    Mylvaganam, Thulasi
    IFAC PAPERSONLINE, 2023, 56 (02): : 1772 - 1777
  • [3] Discrete-Time Linear-Quadratic Dynamic Games
    M. Pachter
    K. D. Pham
    Journal of Optimization Theory and Applications, 2010, 146 : 151 - 179
  • [4] Discrete-Time Linear-Quadratic Dynamic Games
    Pachter, M.
    Pham, K. D.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (01) : 151 - 179
  • [5] Linear-quadratic discrete-time dynamic potential games
    Mazalov, V. V.
    Rettieva, A. N.
    Avrachenkov, K. E.
    AUTOMATION AND REMOTE CONTROL, 2017, 78 (08) : 1537 - 1544
  • [6] Linear-quadratic discrete-time dynamic potential games
    V. V. Mazalov
    A. N. Rettieva
    K. E. Avrachenkov
    Automation and Remote Control, 2017, 78 : 1537 - 1544
  • [7] Discrete-Time Robust Hierarchical Linear-Quadratic Dynamic Games
    Kebriaei, Hamed
    Iannelli, Luigi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (03) : 902 - 909
  • [8] Covariance Steering for Discrete-Time Linear-Quadratic Stochastic Dynamic Games
    Makkapati, Venkata Ramana
    Rajpurohit, Tanmay
    Okamoto, Kazuhide
    Tsiotras, Panagiotis
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1771 - 1776
  • [9] Doubly invariant equilibria of linear discrete-time games
    Caravani, P
    De Santis, E
    AUTOMATICA, 2002, 38 (09) : 1531 - 1538
  • [10] Existence and uniqueness of open-loop Nash equilibria in linear-quadratic discrete time games
    Jank, G
    Abou-Kandil, H
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (02) : 267 - 271