A new numerical approach for solving shape optimization fourth-order spectral problems among convex domains

被引:2
|
作者
Chakib, Abdelkrim [1 ]
Khalil, Ibrahim [1 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Sci & Tech, Appl Math Team AMT, Beni Mellal, Morocco
关键词
Shape optimization; Convex domains; Bi-Laplacian; Eigenvalue problem; Support functions; Gradient method; RAYLEIGHS CONJECTURE; DERIVATIVE FORMULA; PLATE; EIGENVALUES; RESPECT; ELEMENT;
D O I
10.1016/j.camwa.2023.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we deal with a new numerical approach for solving some shape optimization eigenvalue problems governed by the bi-harmonic operator, under volume and convexity constraints. This is based on the new shape derivative formula, recently established in [10,11], which allows to express the shape derivative of optimal shape design problems of minimizing volume cost functionals, in term of support functions. This avoids some computational disadvantages required for the classical shape derivative method involving the vector fields [16, 18], when one use the finite elements discretization for approximating the auxiliary boundary value problems in shape optimization processes. So, we first show the existence of the shape derivative of the eigenvalues for these fourth-order problems with respect to a family of convex domains and express its formula by means of support functions. Thereby we propose a new numerical shape optimization process based on the gradient method performed with the finite element method for approximating the auxiliary eigenvalue boundary value problems. The so obtained numerical results show the efficiency and the ability of the proposed approach in producing good quality solutions for the first ten optimal eigenvalues and their associated optimal shapes.
引用
收藏
页码:171 / 189
页数:19
相关论文
共 50 条
  • [11] Finite difference method for solving fourth-order obstacle problems
    Al-Said, EA
    Noor, MA
    Kaya, D
    Al-Khaled, K
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (06) : 741 - 748
  • [12] A reliable algorithm for solving fourth-order boundary value problems
    Momani S.
    Moadi K.
    [J]. J. Appl. Math. Comp., 2006, 3 (185-197): : 185 - 197
  • [13] Spectral Data Asymptotics for Fourth-Order Boundary Value Problems
    Bondarenko, Natalia P.
    [J]. BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2024, 47 : 31 - 46
  • [14] A Petrov-Galerkin spectral method for fourth-order problems
    Sun, Tao
    Yi, Lijun
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (15) : 2257 - 2270
  • [15] On variational approach to fourth-order problems with unbounded weight
    Galewski, Marek
    Motreanu, Dumitru
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 18579 - 18591
  • [16] A spectral order method for solving the nonlinear fourth-order time-fractional problem
    Guo, Jing
    Pan, Qing
    Xu, Da
    Qiu, Wenlin
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (06) : 4645 - 4667
  • [17] A spectral order method for solving the nonlinear fourth-order time-fractional problem
    Jing Guo
    Qing Pan
    Da Xu
    Wenlin Qiu
    [J]. Journal of Applied Mathematics and Computing, 2022, 68 : 4645 - 4667
  • [18] A comparison of numerical solutions of fourth-order boundary value problems
    Inc, M
    Cherruault, Y
    [J]. KYBERNETES, 2005, 34 (7-8) : 960 - 968
  • [19] Numerical method for a system of fourth-order boundary value problems
    Aziz, Tariq
    Khan, Arshad
    [J]. JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2006, 6 (1-4) : 19 - 29
  • [20] Numerical approximations based on sextic B-spline functions for solving fourth-order singular problems
    Rani, Mehvish
    Abdullah, Farah Aini
    Samreen, Irum
    Abbas, Muhammad
    Majeed, Abdul
    Abdeljawad, Thabet
    Alqudah, Manar A.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (10) : 2139 - 2158