Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study

被引:7
|
作者
Rastogi, Aditya [1 ,2 ]
Brugnara, Gianluca [1 ,2 ]
Foltyn-Dumitru, Martha [1 ,2 ]
Mahmutoglu, Mustafa Ahmed [1 ,2 ]
Preetha, Chandrakanth J. [1 ,2 ]
Kobler, Erich [7 ]
Pflueger, Irada [1 ,2 ]
Schell, Marianne [1 ,2 ]
Deike-Hofmann, Katerina [7 ,29 ]
Kessler, Tobias [4 ,12 ]
van den Bent, Martin J. [8 ]
Idbaih, Ahmed [9 ]
Platten, Michael [10 ,11 ]
Brandes, Alba A. [13 ]
Nabors, Burt [14 ,15 ]
Stupp, Roger [16 ,17 ,18 ]
Bernhardt, Denise [19 ,20 ]
Debus, Juergen [3 ,5 ,6 ]
Abdollahi, Amir [3 ,5 ,6 ]
Gorlia, Thierry [21 ]
Tonn, Joerg-Christian [22 ,23 ]
Weller, Michael [24 ,25 ]
Maier-Hein, Klaus H. [26 ,28 ]
Radbruch, Alexander [7 ]
Wick, Wolfgang [4 ,12 ]
Bendszus, Martin [2 ]
Meredig, Hagen [1 ,2 ]
Kurz, Felix T. [27 ]
Vollmuth, Philipp [1 ,2 ,7 ,26 ]
机构
[1] Heidelberg Univ Hosp, Dept Neuroradiol, Div Computat Neuroimaging, D-69120 Heidelberg, Germany
[2] Heidelberg Univ Hosp, Dept Neuroradiol, Heidelberg, Germany
[3] Heidelberg Univ Hosp, Dept Radiat Oncol, Heidelberg, Germany
[4] Heidelberg Univ Hosp, Neurol Clin, Heidelberg, Germany
[5] Heidelberg Univ Hosp, Heidelberg Inst Radiat Oncol, Heidelberg, Germany
[6] Heidelberg Univ Hosp, Heidelberg Ion Beam Therapy Ctr, Heidelberg, Germany
[7] Univ Med Ctr Bonn, Rheinische Friedrich Wilhelms Univ Bonn, Dept Neuroradiol, Bonn, Germany
[8] Erasmus MC Canc Inst, Brain Tumor Ctr, Rotterdam, Netherlands
[9] Sorbonne Univ, Hop Pitie Salpetriere, Assistance Publ Hop Paris, Serv Neurol 1, Paris, France
[10] Heidelberg Univ, Med Fac Mannheim, Mannheim Ctr Translat Neurosci, Dept Neurol, Mannheim, Germany
[11] German Canc Res Ctr, Clin Cooperat Unit Neuroimmunol & Brain Tumor Immu, German Canc Consortium, Heidelberg, Germany
[12] German Canc Res Ctr, Clin Cooperat Unit Neurooncol, German Canc Consortium, Heidelberg, Germany
[13] Azienda Unita Sanit Locale Bologna, Dept Med Oncol, Bologna, Italy
[14] Univ Alabama Birmingham, Dept Neurol, Div Neurooncol, Birmingham, AL USA
[15] Univ Alabama Birmingham, ONeal Comprehens Canc Ctr, Birmingham, AL USA
[16] Northwestern Med & Northwestern Univ, Lou & Jean Malnati Brain Tumor Inst, Robert H Lurie Comprehens Canc Ctr, Chicago, IL USA
[17] Northwestern Med & Northwestern Univ, Dept Neurol Surg, Chicago, IL USA
[18] Northwestern Med & Northwestern Univ, Dept Neurol, Chicago, IL USA
[19] Tech Univ Munich, Sch Med, Dept Radiat Oncol, Munich, Germany
[20] Tech Univ Munich, Klinikum rechts Isar, Munich, Germany
[21] European Org Res Treatment Canc, Brussels, Belgium
[22] Ludwig Maximilians Univ Munchen, Dept Neurosurg, Munich, Germany
[23] German Ctr Res Ctr, partner site Munich, German Canc Consortium, Munich, Germany
[24] Univ Hosp, Dept Neurol, Zurich, Switzerland
[25] Univ Zurich, Zurich, Switzerland
[26] German Canc Res Ctr, Med Image Comp, Heidelberg, Germany
[27] German Canc Res Ctr, Dept Radiol, Heidelberg, Germany
[28] Heidelberg Univ Hosp, Dept Radiat Oncol, Pattern Anal & Learning Grp, Heidelberg, Germany
[29] German Ctr Neurodegenerat Dis, Bonn, Germany
来源
LANCET ONCOLOGY | 2024年 / 25卷 / 02期
关键词
NEWLY-DIAGNOSED GLIOBLASTOMA; STANDARD TREATMENT; OPEN-LABEL;
D O I
10.1016/S1470-2045(23)00641-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. Methods In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. Findings In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0<middle dot>88 to 0<middle dot>99 across different acceleration rates, with 0<middle dot>92 (95% CI 0<middle dot>92-0<middle dot>93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0<middle dot>89 [95% CI 0<middle dot>88 to 0<middle dot>89]; median volume difference of 0<middle dot>01 cm(3) [95% CI 0<middle dot>00 to 0<middle dot>03] equalling 0<middle dot>21%; p=0<middle dot>0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0<middle dot>94 [95% CI 0<middle dot>94 to 0<middle dot>95]; median volume difference of -0<middle dot>79 cm(3) [95% CI -0<middle dot>87 to -0<middle dot>72] equalling -1<middle dot>77%; p=0<middle dot>023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4<middle dot>27 months (95% CI 4<middle dot>14 to 4<middle dot>57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0<middle dot>80) and agreement in the time to progression in 374 (95<middle dot>2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0<middle dot>0001). Interpretation Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation.
引用
收藏
页码:400 / 410
页数:11
相关论文
共 50 条
  • [21] Deep-learning-based prognostic modeling for incident heart failure in patients with diabetes using electronic health records: A retrospective cohort study
    Gandin, Ilaria
    Saccani, Sebastiano
    Coser, Andrea
    Scagnetto, Arjuna
    Cappelletto, Chiara
    Candido, Riccardo
    Barbati, Giulia
    Di Lenarda, Andrea
    PLOS ONE, 2023, 18 (02):
  • [22] Deep learning for the early identification of periodontitis: a retrospective, multicentre study
    Liu, Q.
    Dai, F.
    Zhu, H.
    Yang, H.
    Huang, Y.
    Jiang, L.
    Tang, X.
    Deng, L.
    Song, L.
    CLINICAL RADIOLOGY, 2023, 78 (12) : E985 - E992
  • [23] Deep Learning?Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction
    Zhang, Shuo
    Zhong, Meimeng
    Shenliu, Hanxu
    Wang, Nan
    Hu, Shuai
    Lu, Xulun
    Lin, Liangjie
    Zhang, Haonan
    Zhao, Yan
    Yang, Chao
    Feng, Hongbo
    Song, Qingwei
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2025, 46 (01) : 41 - 48
  • [24] Deep learning-based Intraoperative MRI reconstruction
    Ottesen, Jon Andre
    Storas, Tryggve
    Vatnehol, Svein Are Sirirud
    Lovland, Grethe
    Vik-Mo, Einar Osland
    Schellhorn, Till
    Skogen, Karoline
    Larsson, Christopher
    Bjornerud, Atle
    Groote-Eindbaas, Inge Rasmus
    Caan, Matthan W. A.
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2025, 9 (01)
  • [25] MRI pulse sequence integration for deep-learning-based brain metastases segmentation
    Yi, Darvin
    Grovik, Endre
    Tong, Elizabeth
    Iv, Michael
    Emblem, Kyrre Eeg
    Nilsen, Line Brennhaug
    Saxhaug, Cathrine
    Latysheva, Anna
    Jacobsen, Kari Dolven
    Helland, Aslaug
    Zaharchuk, Greg
    Rubin, Daniel
    MEDICAL PHYSICS, 2021, 48 (10) : 6020 - 6035
  • [26] Deep-Learning-Based Disease Classification in Patients Undergoing Cine Cardiac MRI
    Jacob, Athira J.
    Chitiboi, Teodora
    Schoepf, U. Joseph
    Sharma, Puneet
    Aldinger, Jonathan
    Baker, Charles
    Lautenschlager, Carla
    Emrich, Tilman
    Varga-Szemes, Akos
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2025, 61 (04) : 1635 - 1647
  • [27] Deep-learning-based deformable image registration of head CT and MRI scans
    Ratke, Alexander
    Darsht, Elena
    Heinzelmann, Feline
    Kroeninger, Kevin
    Timmermann, Beate
    Baeumer, Christian
    FRONTIERS IN PHYSICS, 2023, 11
  • [28] Deep-Learning-Based Segmentation of the Shoulder from MRI with Inference Accuracy Prediction
    Hess, Hanspeter
    Ruckli, Adrian C.
    Burki, Finn
    Gerber, Nicolas
    Menzemer, Jennifer
    Burger, Juergen
    Schar, Michael
    Zumstein, Matthias A.
    Gerber, Kate
    DIAGNOSTICS, 2023, 13 (10)
  • [29] Joint reconstruction and segmentation in undersampled 3D knee MRI combining shape knowledge and deep learning
    Kofler, A.
    Wald, C.
    Kolbitsch, C.
    Tycowicz, C., V
    Ambellan, F.
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (09):
  • [30] Deep-learning-based porous media microstructure quantitative characterization and reconstruction method
    Huang, Yubo
    Xiang, Zhong
    Qian, Miao
    PHYSICAL REVIEW E, 2022, 105 (01)