Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study

被引:7
|
作者
Rastogi, Aditya [1 ,2 ]
Brugnara, Gianluca [1 ,2 ]
Foltyn-Dumitru, Martha [1 ,2 ]
Mahmutoglu, Mustafa Ahmed [1 ,2 ]
Preetha, Chandrakanth J. [1 ,2 ]
Kobler, Erich [7 ]
Pflueger, Irada [1 ,2 ]
Schell, Marianne [1 ,2 ]
Deike-Hofmann, Katerina [7 ,29 ]
Kessler, Tobias [4 ,12 ]
van den Bent, Martin J. [8 ]
Idbaih, Ahmed [9 ]
Platten, Michael [10 ,11 ]
Brandes, Alba A. [13 ]
Nabors, Burt [14 ,15 ]
Stupp, Roger [16 ,17 ,18 ]
Bernhardt, Denise [19 ,20 ]
Debus, Juergen [3 ,5 ,6 ]
Abdollahi, Amir [3 ,5 ,6 ]
Gorlia, Thierry [21 ]
Tonn, Joerg-Christian [22 ,23 ]
Weller, Michael [24 ,25 ]
Maier-Hein, Klaus H. [26 ,28 ]
Radbruch, Alexander [7 ]
Wick, Wolfgang [4 ,12 ]
Bendszus, Martin [2 ]
Meredig, Hagen [1 ,2 ]
Kurz, Felix T. [27 ]
Vollmuth, Philipp [1 ,2 ,7 ,26 ]
机构
[1] Heidelberg Univ Hosp, Dept Neuroradiol, Div Computat Neuroimaging, D-69120 Heidelberg, Germany
[2] Heidelberg Univ Hosp, Dept Neuroradiol, Heidelberg, Germany
[3] Heidelberg Univ Hosp, Dept Radiat Oncol, Heidelberg, Germany
[4] Heidelberg Univ Hosp, Neurol Clin, Heidelberg, Germany
[5] Heidelberg Univ Hosp, Heidelberg Inst Radiat Oncol, Heidelberg, Germany
[6] Heidelberg Univ Hosp, Heidelberg Ion Beam Therapy Ctr, Heidelberg, Germany
[7] Univ Med Ctr Bonn, Rheinische Friedrich Wilhelms Univ Bonn, Dept Neuroradiol, Bonn, Germany
[8] Erasmus MC Canc Inst, Brain Tumor Ctr, Rotterdam, Netherlands
[9] Sorbonne Univ, Hop Pitie Salpetriere, Assistance Publ Hop Paris, Serv Neurol 1, Paris, France
[10] Heidelberg Univ, Med Fac Mannheim, Mannheim Ctr Translat Neurosci, Dept Neurol, Mannheim, Germany
[11] German Canc Res Ctr, Clin Cooperat Unit Neuroimmunol & Brain Tumor Immu, German Canc Consortium, Heidelberg, Germany
[12] German Canc Res Ctr, Clin Cooperat Unit Neurooncol, German Canc Consortium, Heidelberg, Germany
[13] Azienda Unita Sanit Locale Bologna, Dept Med Oncol, Bologna, Italy
[14] Univ Alabama Birmingham, Dept Neurol, Div Neurooncol, Birmingham, AL USA
[15] Univ Alabama Birmingham, ONeal Comprehens Canc Ctr, Birmingham, AL USA
[16] Northwestern Med & Northwestern Univ, Lou & Jean Malnati Brain Tumor Inst, Robert H Lurie Comprehens Canc Ctr, Chicago, IL USA
[17] Northwestern Med & Northwestern Univ, Dept Neurol Surg, Chicago, IL USA
[18] Northwestern Med & Northwestern Univ, Dept Neurol, Chicago, IL USA
[19] Tech Univ Munich, Sch Med, Dept Radiat Oncol, Munich, Germany
[20] Tech Univ Munich, Klinikum rechts Isar, Munich, Germany
[21] European Org Res Treatment Canc, Brussels, Belgium
[22] Ludwig Maximilians Univ Munchen, Dept Neurosurg, Munich, Germany
[23] German Ctr Res Ctr, partner site Munich, German Canc Consortium, Munich, Germany
[24] Univ Hosp, Dept Neurol, Zurich, Switzerland
[25] Univ Zurich, Zurich, Switzerland
[26] German Canc Res Ctr, Med Image Comp, Heidelberg, Germany
[27] German Canc Res Ctr, Dept Radiol, Heidelberg, Germany
[28] Heidelberg Univ Hosp, Dept Radiat Oncol, Pattern Anal & Learning Grp, Heidelberg, Germany
[29] German Ctr Neurodegenerat Dis, Bonn, Germany
来源
LANCET ONCOLOGY | 2024年 / 25卷 / 02期
关键词
NEWLY-DIAGNOSED GLIOBLASTOMA; STANDARD TREATMENT; OPEN-LABEL;
D O I
10.1016/S1470-2045(23)00641-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. Methods In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. Findings In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0<middle dot>88 to 0<middle dot>99 across different acceleration rates, with 0<middle dot>92 (95% CI 0<middle dot>92-0<middle dot>93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0<middle dot>89 [95% CI 0<middle dot>88 to 0<middle dot>89]; median volume difference of 0<middle dot>01 cm(3) [95% CI 0<middle dot>00 to 0<middle dot>03] equalling 0<middle dot>21%; p=0<middle dot>0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0<middle dot>94 [95% CI 0<middle dot>94 to 0<middle dot>95]; median volume difference of -0<middle dot>79 cm(3) [95% CI -0<middle dot>87 to -0<middle dot>72] equalling -1<middle dot>77%; p=0<middle dot>023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4<middle dot>27 months (95% CI 4<middle dot>14 to 4<middle dot>57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0<middle dot>80) and agreement in the time to progression in 374 (95<middle dot>2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0<middle dot>0001). Interpretation Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation.
引用
收藏
页码:400 / 410
页数:11
相关论文
共 50 条
  • [1] Deep learning for undersampled MRI reconstruction
    Hyun, Chang Min
    Kim, Hwa Pyung
    Lee, Sung Min
    Lee, Sungchul
    Seo, Jin Keun
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (13):
  • [2] NPB-REC: Non-parametric Assessment of Uncertainty in Deep-Learning-Based MRI Reconstruction from Undersampled Data
    Khawaled, Samah
    Freiman, Moti
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION (MLMIR 2022), 2022, 13587 : 14 - 23
  • [3] DLGAN: Undersampled MRI reconstruction using Deep Learning based Generative Adversarial Network
    Noor, Rida
    Wahid, Abdul
    Bazai, Sibghat Ullah
    Khan, Asad
    Fang, Meie
    Syam, M. S.
    Bhatti, Uzair Aslam
    Ghadi, Yazeed Yasin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 93
  • [4] Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study
    Preetha, Chandrakanth Jayachandran
    Meredig, Hagen
    Brugnara, Gianluca
    Mahmutoglu, Mustafa A.
    Foltyn, Martha
    Isensee, Fabian
    Kessler, Tobias
    Pflueger, Irada
    Schell, Marianne
    Neuberger, Ulf
    Petersen, Jens
    Wick, Antje
    Heiland, Sabine
    Debus, Juergen
    Platten, Michael
    Idbaih, Ahmed
    Brandes, Alba A.
    Winkler, Frank
    van den Bent, Martin J.
    Nabors, Burt
    Stupp, Roger
    Maier-Hein, Klaus H.
    Gorlia, Thierry
    Tonn, Joerg-Christian
    Weller, Michael
    Wick, Wolfgang
    Bendszus, Martin
    Vollmuth, Philipp
    LANCET DIGITAL HEALTH, 2021, 3 (12): : E784 - E794
  • [5] Exploiting Motion for Deep Learning Reconstruction of Extremely-Undersampled Dynamic MRI
    Seegoolam, Gavin
    Schlemper, Jo
    Qin, Chen
    Price, Anthony
    Hajnal, Jo
    Rueckert, Daniel
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 704 - 712
  • [6] Findings on 7000 MRI of the IAM: To scan or not to scan?: A retrospective cohort study
    Amiraraghi, N.
    Lim, S.
    Locke, R.
    Crowther, J. A.
    Kontorinis, G.
    CLINICAL OTOLARYNGOLOGY, 2018, 43 (06) : 1607 - 1610
  • [7] Complexities of deep learning-based undersampled MR image reconstruction
    Noordman, Constant Richard
    Yakar, Derya
    Bosma, Joeran
    Simonis, Frank Frederikus Jacobus
    Huisman, Henkjan
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [8] Complexities of deep learning-based undersampled MR image reconstruction
    Constant Richard Noordman
    Derya Yakar
    Joeran Bosma
    Frank Frederikus Jacobus Simonis
    Henkjan Huisman
    European Radiology Experimental, 7
  • [9] Deep-Learning-Based Segmentation of Cells and Analysis (DL-SCAN)
    Bhattarai, Alok
    Meyer, Jan
    Petersilie, Laura
    Shah, Syed I.
    Neu, Louis A.
    Rose, Christine R.
    Ullah, Ghanim
    BIOMOLECULES, 2024, 14 (11)
  • [10] Deep-Learning-Based Preprocessing for Quantitative Myocardial Perfusion MRI
    Scannell, Cian M.
    Veta, Mitko
    Villa, Adriana D. M.
    Sammut, Eva C.
    Lee, Jack
    Breeuwer, Marcel
    Chiribiri, Amedeo
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (06) : 1689 - 1696