Characterizing Riesz bases via biorthogonal Bessel sequences

被引:1
|
作者
E., Zikkos [1 ]
机构
[1] Khalifa Univ, Abu Dhabi, U Arab Emirates
关键词
Riesz-Fischer sequence; Bessel sequence; Riesz sequence; Riesz basis; biorthogonal sequence; completeness;
D O I
10.15330/cmp.15.2.377-380
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently D.T. Stoeva proved that if two Bessel sequences in a separable Hilbert space H are biorthogonal and one of them is complete in H, then both sequences are Riesz bases for H. This improves a well known result where completeness is assumed on both sequences. In this note we present an alternative proof of Stoeva's result which is quite short and elementary, based on the notion of Riesz-Fischer sequences.
引用
下载
收藏
页码:377 / 380
页数:4
相关论文
共 50 条
  • [41] BIORTHOGONAL WAVELET BASES ON R(D)
    LONG, RL
    CHEN, DR
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (03) : 230 - 242
  • [42] Generalized biorthogonal bases and tridiagonalisation of matrices
    Markus Ziegler
    Numerische Mathematik, 1997, 77 : 407 - 421
  • [43] The riesz convergence and riesz core of double sequences
    Abdullah M Alotaibi
    Celal Çakan
    Journal of Inequalities and Applications, 2012
  • [44] BIISOMETRIC OPERATORS AND BIORTHOGONAL SEQUENCES
    Kubrusly, Carlos
    Levan, Nhan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (03) : 585 - 596
  • [45] Biorthogonal bases for coupled harmonic oscillators
    Dattoli, G
    Lorenzutta, S
    Maino, G
    Torre, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1996, 111 (12): : 1529 - 1534
  • [46] BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS
    COHEN, A
    DAUBECHIES, I
    FEAUVEAU, JC
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) : 485 - 560
  • [47] On syndetic Riesz sequences
    Marcin Bownik
    Itay Londner
    Israel Journal of Mathematics, 2019, 233 : 113 - 131
  • [48] Construction and Stability of Riesz Bases
    Bai, Yulin
    Wang, Wanyi
    Wang, Guixia
    Ge, Suqin
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [49] ON SYNDETIC RIESZ SEQUENCES
    Bownik, Marcin
    Londner, Itay
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 233 (01) : 113 - 131
  • [50] New characterizations of Riesz bases
    Kim, HO
    Lim, JK
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1997, 4 (02) : 222 - 229