Optimal regularity of the thin obstacle problem by an epiperimetric inequality

被引:1
|
作者
Carducci, Matteo [1 ]
机构
[1] Univ Roma La Sapienza, Dept Math Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
关键词
Free boundary regularity; Thin obstacle problem; Epiperimetric inequality;
D O I
10.1007/s10231-023-01403-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The key point to prove the optimal C-1,C-1/2 regularity of the thin obstacle problem is that the frequency at a point of the free boundary x(0) is an element of Gamma (u), say N-x0 (0(+), u), satisfies the lower bound N-x0 (0(+), u) >= 3 2. In this paper, we show an alternative method to prove this estimate, using an epiperimetric inequality for negative energies W3/2. It allows to say that there are not lambda-homogeneous global solutions with lambda is an element of(1, 3/2), and by this frequency gap, we obtain the desired lower bound, thus a new self-contained proof of the optimal regularity.
引用
收藏
页码:1311 / 1326
页数:16
相关论文
共 50 条
  • [31] An Epiperimetric Inequality for the Regularity of Some Free Boundary Problems: The 2-Dimensional Case
    Spolaor, Luca
    Velichkov, Bozhidar
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (02) : 375 - 421
  • [32] Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options
    Marie Frentz
    Kaj Nyström
    Andrea Pascucci
    Sergio Polidoro
    [J]. Mathematische Annalen, 2010, 347 : 805 - 838
  • [33] Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options
    Frentz, Marie
    Nystrom, Kaj
    Pascucci, Andrea
    Polidoro, Sergio
    [J]. MATHEMATISCHE ANNALEN, 2010, 347 (04) : 805 - 838
  • [34] The regularity theory for the double obstacle problem
    Ki-Ahm Lee
    Jinwan Park
    Henrik Shahgholian
    [J]. Calculus of Variations and Partial Differential Equations, 2019, 58
  • [35] The regularity theory for the double obstacle problem
    Lee, Ki-Ahm
    Park, Jinwan
    Shahgholian, Henrik
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)
  • [36] Optimal regularity for a two-phase obstacle-like problem with logarithmic singularity
    Kriventsov, Dennis
    Shahgholian, Henrik
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (10) : 1831 - 1850
  • [37] C1, α Regularity for Solutions to the p-harmonic Thin Obstacle Problem
    Andersson, John
    Mikayelyan, Hayk
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (01) : 119 - 134
  • [38] Optimal regularity for supercritical parabolic obstacle problems
    Ros-Oton, Xavier
    Torres-Latorre, Clara
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (03) : 1724 - 1765
  • [39] ISOPERIMETRIC INEQUALITY FOR A PARABOLIC OBSTACLE PROBLEM
    DIAZ, JI
    MOSSINO, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (17): : 737 - 740
  • [40] Generic regularity of free boundaries for the obstacle problem
    Alessio Figalli
    Xavier Ros-Oton
    Joaquim Serra
    [J]. Publications mathématiques de l'IHÉS, 2020, 132 : 181 - 292