Efficient Annotation and Learning for 3D Hand Pose Estimation: A Survey

被引:5
|
作者
Ohkawa, Takehiko [1 ]
Furuta, Ryosuke [1 ]
Sato, Yoichi [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, 4-6-1 Komaba,Meguro Ku, Tokyo 1538505, Japan
关键词
Hand pose estimation; Efficient annotation; Learning with limited labels; TRACKING;
D O I
10.1007/s11263-023-01856-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this survey, we present a systematic review of 3D hand pose estimation from the perspective of efficient annotation and learning. 3D hand pose estimation has been an important research area owing to its potential to enable various applications, such as video understanding, AR/VR, and robotics. However, the performance of models is tied to the quality and quantity of annotated 3D hand poses. Under the status quo, acquiring such annotated 3D hand poses is challenging, e.g., due to the difficulty of 3D annotation and the presence of occlusion. To reveal this problem, we review the pros and cons of existing annotation methods classified as manual, synthetic-model-based, hand-sensor-based, and computational approaches. Additionally, we examine methods for learning 3D hand poses when annotated data are scarce, including self-supervised pretraining, semi-supervised learning, and domain adaptation. Based on the study of efficient annotation and learning, we further discuss limitations and possible future directions in this field.
引用
收藏
页码:3193 / 3206
页数:14
相关论文
共 50 条
  • [21] PEAN: 3D Hand Pose Estimation Adversarial Network
    Sun, Linhui
    Zhang, Yifan
    Cheng, Jian
    Lu, Hanqing
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 1251 - 1258
  • [22] Residual Attention Regression for 3D Hand Pose Estimation
    Li, Jing
    Zhang, Long
    Ju, Zhaojie
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT IV, 2019, 11743 : 605 - 614
  • [23] CASCADED POINT NETWORK FOR 3D HAND POSE ESTIMATION
    Dou, Yikun
    Wang, Xuguang
    Zhu, Yuying
    Deng, Xiaoming
    Ma, Cuixia
    Chang, Liang
    Wang, Hongan
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1982 - 1986
  • [24] 3D Hand Pose Estimation on Conventional Capacitive Touchscreens
    Choi, Frederick
    Mayer, Sven
    Harrison, Chris
    PROCEEDINGS OF 23RD ACM INTERNATIONAL CONFERENCE ON MOBILE HUMAN-COMPUTER INTERACTION (MOBILEHCI 2021): MOBILE APART, MOBILE TOGETHER, 2021,
  • [25] Database indexing methods for 3D hand pose estimation
    Athitsos, V
    Sclaroff, S
    GESTURE-BASED COMMUNICATION IN HUMAN-COMPUTER INTERACTION, 2003, 2915 : 288 - 299
  • [26] Hand PointNet: 3D Hand Pose Estimation using Point Sets
    Ge, Liuhao
    Cai, Yujun
    Weng, Junwu
    Yuan, Junsong
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8417 - 8426
  • [27] 3D Hand Pose Estimation from Single Depth Images with Label Distribution Learning
    Xu, Yuanfei
    Wang, Xupeng
    2020 IEEE INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (ICESS), 2020,
  • [28] 3D hand pose estimation using RGBD images and hybrid deep learning networks
    Mofarreh-Bonab, Mohammad
    Seyedarabi, Hadi
    Mozaffari Tazehkand, Behzad
    Kasaei, Shohreh
    VISUAL COMPUTER, 2022, 38 (06): : 2023 - 2032
  • [29] 3D hand pose estimation using RGBD images and hybrid deep learning networks
    Mohammad Mofarreh-Bonab
    Hadi Seyedarabi
    Behzad Mozaffari Tazehkand
    Shohreh Kasaei
    The Visual Computer, 2022, 38 : 2023 - 2032
  • [30] 3D Hand Pose Estimation with a Single Infrared Camera via Domain Transfer Learning
    Park, Gabyong
    Kim, Tae-Kyun
    Woo, Woontack
    2020 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR 2020), 2020, : 588 - 599