Deep TL: progress of a machine learning aided personal dose monitoring system

被引:2
|
作者
Derugin, Evelin [1 ]
Kroeninger, Kevin [1 ]
Mentzel, Florian [1 ]
Nackenhorst, Olaf [1 ]
Walbersloh, Joerg [2 ]
Weingarten, Jens [1 ]
机构
[1] TU Dortmund Univ, Dept Phys, D-44227 Dortmund, Germany
[2] Mat Prufungsamt Nordrhein Westfalen, Personendosimetrie, D-44287 Dortmund, Germany
关键词
GLOW CURVE; DOSIMETRY;
D O I
10.1093/rpd/ncad078
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Personal dosemeters using thermoluminescence detectors can provide information about the irradiation event beyond the pure dose estimation, which is valuable for improving radiation protection measures. In the presented study, the glow curves of the novel TL-DOS dosemeters developed by the Materialprufungsamt NRW in cooperation with the TU Dortmund University are analysed using deep learning approaches to predict the irradiation date of a single-dose irradiation of 10 mGy within a monitoring interval of 41 d. In contrast of previous work, the glow curves are measured using the current routine read-out process by pre-heating the detectors before the read-out. The irradiation dates are predicted with an accuracy of 2-5 d by the deep learning algorithm. Furthermore, the importance of the input features is evaluated using Shapley values to increase the interpretability of the neural network.
引用
收藏
页码:767 / 774
页数:8
相关论文
共 50 条
  • [41] Deep Learning-Aided TR-UWB MIMO System
    Zia, Muhammad Umer
    Xiang, Wei
    Huang, Tao
    Naqvi, Ijaz Haider
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (10) : 6579 - 6588
  • [42] Enhancing Intrusion Detection System Using Machine Learning and Deep Learning
    Madhusudhan, R.
    Thakur, Shubham Kumar
    Pravisha, P.
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 3, AINA 2024, 2024, 201 : 326 - 337
  • [43] Deep learning and machine learning in psychiatry: a survey of current progress in depression detection, diagnosis and treatment
    Squires, Matthew
    Tao, Xiaohui
    Elangovan, Soman
    Gururajan, Raj
    Zhou, Xujuan
    Acharya, U. Rajendra
    Li, Yuefeng
    BRAIN INFORMATICS, 2023, 10 (01)
  • [44] Research Progress of Machine Learning and Deep Learning in Intelligent Diagnosis of the Coronary Atherosclerotic Heart Disease
    Lu, Haoxuan
    Yao, Yudong
    Wang, Li
    Yan, Jianing
    Tu, Shuangshuang
    Xie, Yanqing
    He, Wenming
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [45] Deep Learning Aided Transmit Power Estimation in Mobile Communication System
    Khan, Saud
    Shin, Soo Young
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (08) : 1405 - 1408
  • [46] A Study: Machine Learning and Deep Learning Approaches for Intrusion Detection System
    Sekhar, C. H.
    Rao, K. Venkata
    SECOND INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGIES, ICCNCT 2019, 2020, 44 : 845 - 849
  • [47] Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning
    Yan, Jielu
    Cai, Jianxiu
    Zhang, Bob
    Wang, Yapeng
    Wong, Derek F.
    Siu, Shirley W., I
    ANTIBIOTICS-BASEL, 2022, 11 (10):
  • [48] Research progress of deep learning in low-dose CT image denoising
    Zhang, Fan
    Liu, Jingyu
    Liu, Ying
    Zhang, Xinhong
    RADIATION PROTECTION DOSIMETRY, 2023, 199 (04) : 337 - 346
  • [49] Progress of machine learning-based biosensors for the monitoring of food safety: A review
    Hassan, Md Mehedi
    Xu, Yi
    Sayada, Jannatul
    Zareef, Muhammad
    Shoaib, Muhammad
    Chen, Xiaomei
    Li, Huanhuan
    Chen, Quansheng
    BIOSENSORS & BIOELECTRONICS, 2025, 267
  • [50] Deep Learning for Infrared Thermal Image Based Machine Health Monitoring
    Janssens, Olivier
    Van de Walle, Rik
    Loccufier, Mia
    Van Hoecke, Sofie
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (01) : 151 - 159