New perceptions for the bright and dark soliton solutions to the modified nonlinear Schrodinger equation

被引:5
|
作者
Shehata, Maha S. M. [1 ]
Bekir, Ahmet [2 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
[2] Neighbourhood Akcaglan,Imarli St 28-4, TR-26030 Eskisehir, Turkiye
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2023年 / 37卷 / 21期
关键词
The modified nonlinear Schrodinger equation; the solitary wave ansatz method; the extended simple equation method; soliton solutions; TANH-FUNCTION METHOD; OPTICAL SOLITONS; WAVE SOLUTIONS;
D O I
10.1142/S0217979223502041
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this study, we will implement new bright and dark perceptions for the solitary wave solutions to the modified nonlinear Schrodinger equation. The achieved solutions will describe new vision of the following forms. The first form is the rogue wave modes for a derivative nonlinear Schrodinger model with positive linear dispersion which describe the propagation of rogue waves in ocean engineering as well as all similar waves such as dynamics waveguides that have unexpected large displacements. The second form is the waves which occur only in the regime of positive cubic nonlinearity. The third form is the waves that also occur in the regime that coincides exactly with the existence of instabilities of plane waves. The fourth form is the long-wave limit of a breather (a pulsing mode). Two famous different schemas are involved for this purpose. The first schema is the solitary wave ansatz method, while the second schema is the extended simple equation method. The two schemas are implemented in the same vein and parallel to construct new perceptions to the soliton solutions of this model. A comparison between the obtained new perceptions with the old perceptions that were realized before they have been documented.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Multi-elliptic-dark soliton solutions of the defocusing nonlinear Schrodinger equation
    Ling, Liming
    Sun, Xuan
    APPLIED MATHEMATICS LETTERS, 2024, 148
  • [22] DARK SOLITON SOLUTIONS TO THE NONLINEAR SCHRODINGER EQUATION FOR ULTRASHORT PULSE PROPAGATION IN METAMATERIALS
    Cheng, Xi
    Zhuang, Binxian
    Dai, Xiaoyu
    Su, Wenhua
    Wen, Shuangchun
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2009, 18 (02) : 271 - 284
  • [23] New bright and dark solitons for quintic nonlinear derivative Schrodinger equation
    Wu, Fengxia
    Dai, Zhengde
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9305 - 9309
  • [24] Casorati determinant form of dark soliton solutions of the discrete nonlinear Schrodinger equation
    Maruno, Ken-ichi
    Ohta, Yasuhiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (05)
  • [25] Multiple bright soliton solutions of a reverse-space nonlocal nonlinear Schrodinger equation
    Chen, Junchao
    Yan, Qixiu
    Zhang, Hao
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [26] Dark-dark and dark-bright soliton interactions in the two-component defocusing nonlinear Schrodinger equation
    Dean, Garrett
    Klotz, Taylor
    Prinari, Barbara
    Vitale, Federica
    APPLICABLE ANALYSIS, 2013, 92 (02) : 379 - 397
  • [27] Bright soliton solutions to a nonlocal nonlinear Schrodinger equation of reverse-time type
    Chen, Junchao
    Yan, Qixiu
    NONLINEAR DYNAMICS, 2020, 100 (03) : 2807 - 2816
  • [28] Dark-bright soliton interactions in coupled nonautonomous nonlinear Schrodinger equation with complex potentials
    Nandy, Sudipta
    Barthakur, Abhijit
    CHAOS SOLITONS & FRACTALS, 2021, 143 (143)
  • [29] Bright, dark and hybrid multistrip optical soliton solutions of a non-linear Schrodinger equation using modified extended tanh technique with new Riccati solutions
    Ahmad, Shafiq
    Salman
    Ullah, Aman
    Ahmad, Shabir
    Akgul, Ali
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (03)
  • [30] Soliton solutions of driven nonlinear Schrodinger equation
    Vyas, Vivek M.
    Raju, T. Soloman
    Kumar, C. Nagaraja
    Panigrahi, Prasanta K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (29): : 9151 - 9159