Automated detection and classification of psoriasis types using deep neural networks from dermatology images

被引:2
|
作者
Rashid, Muhammad Sajid [1 ]
Gilanie, Ghulam [1 ]
Naveed, Saira [2 ]
Cheema, Sana [1 ]
Sajid, Muhammad [1 ]
机构
[1] Islamia Univ Bahawalpur, Fac Comp, Dept Artificial Intelligence, Bahawalpur, Pakistan
[2] Islamia Univ, Innovat Res & Dev Grp IRDG, Bahawalpur Rd, Bahawalpur, Pakistan
关键词
Dermoscopic images; Deep neural network; Psoriasis type's classification;
D O I
10.1007/s11760-023-02722-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Psoriasis is a chronic inflammatory disease that significantly affects the patient's living standard. Dermatologists examine the skin lesions visually to determine the condition. Guttate psoriasis, flexural or inverse psoriasis, pustular psoriasis, erythrodermic psoriasis, psoriatic arthritis, etc., are the most common skin conditions affecting people worldwide. Dermoscopic images are used for clinical diagnosis of these conditions, which require a specialized setup with various medical equipment for better understanding. Patients with skin conditions in Pakistan don't bother going to clinics; they might have serious skin conditions. In this study, a light-weighted deep neural network (DNN)-based model has been developed with fewer but learnable parameters. The results obtained with the proposed DNN model have been compared with the state-of-the-art pre-trained models, i.e., Googlenet, InceptionV3, and VGG-19. Benchmarked, publicly available datasets have been used for experiments. The datasets included in the investigation contain RGB images and are converted into YCbCr for better classification. Standard evaluation parameters, i.e., accuracy, specificity, sensitivity, and area under the curve (AUC), have been used to evaluate the proposed DNN-based model. The proposed model for all psoriasis types achieves the best classification performance. The highest one is the case of psoriatic arthritis, where these measures are (accuracy = 99.89%, specificity = 99.08%, sensitivity = 99.0%, and AUC = 0.99). Using the proposed model, it is demonstrated that YCbcr is the best color space for identifying psoriasis and its types.
引用
收藏
页码:163 / 172
页数:10
相关论文
共 50 条
  • [31] Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
    Abdullah Almutairi
    Pan He
    Anand Rangarajan
    Sanjay Ranka
    International Journal of Intelligent Transportation Systems Research, 2022, 20 : 483 - 494
  • [32] Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
    Almutairi, Abdullah
    He, Pan
    Rangarajan, Anand
    Ranka, Sanjay
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2022, 20 (02) : 483 - 494
  • [33] FULLY AUTOMATED CLASSIFICATION OF MAMMOGRAMS USING DEEP RESIDUAL NEURAL NETWORKS
    Dhungel, Neeraj
    Carneiro, Gustavo
    Bradley, Andrew P.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 310 - 314
  • [34] Automated bat call classification using deep convolutional neural networks
    Schwab, E.
    Pogrebnoj, S.
    Freund, M.
    Flossmann, F.
    Vogl, S.
    Frommolt, K-H
    BIOACOUSTICS-THE INTERNATIONAL JOURNAL OF ANIMAL SOUND AND ITS RECORDING, 2023, 32 (01): : 1 - 16
  • [35] ANOMALY DETECTION IN THERMAL IMAGES USING DEEP NEURAL NETWORKS
    Cai Lile
    Li Yiqun
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2299 - 2303
  • [37] Diagnostic Classification of Cystoscopic Images Using Deep Convolutional Neural Networks
    Eminaga, Okyaz
    Eminaga, Nurettin
    Semjonow, Axel
    Breil, Bernhard
    JCO CLINICAL CANCER INFORMATICS, 2018, 2 : 1 - 8
  • [38] Classification of human protein cell images using deep neural networks
    Dong, Yumin
    Che, Xuanxuan
    Fu, Yanying
    Liu, Hengrui
    Sun, Lina
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (02) : 4159 - 4172
  • [39] Classification of Optical Coherence Tomography Images Using Deep Neural Networks
    Kotoku, J.
    Tsuji, T.
    Hirose, Y.
    Fujimori, K.
    Hirose, T.
    Oyama, A.
    Saikawa, Y.
    Mimura, T.
    Shiraishi, K.
    Kobayashi, T.
    Mizota, A.
    MEDICAL PHYSICS, 2020, 47 (06) : E391 - E391
  • [40] Diagnostic Classification of Cystoscopic Images Using Deep Convolutional Neural Networks
    Narter, Fehmi
    JOURNAL OF UROLOGICAL SURGERY, 2019, 6 (03): : 264 - 264