Tripartite entanglement and entanglement transfer in a hybrid cavity magnomechanical system

被引:3
|
作者
Li, Ming-Cui [1 ]
Chen, Ai-Xi [2 ]
Zeng, Wei [1 ]
机构
[1] East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
[2] Zhejiang Sci Tech Univ, Sch Mat Sci & Engn, Hangzhou 310018, Peoples R China
来源
OPEN PHYSICS | 2023年 / 21卷 / 01期
关键词
tripartite entanglement; transfer; magnon; cavity; MAGNON;
D O I
10.1515/phys-2022-0240
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose to realize bipartite and tripartite entanglements transfer in a cavity magnomechanical system consisting of a microwave cavity with an yttrium iron garnet (YIG) sphere and a silicon-nitride membrane in it. The initial magnon-YIG phonon entanglement and photon-membrane phonon entanglement caused by the magnetostrictive interaction and the optomechanical interaction can be effectively transferred to magnon-membrane phonon entanglement and photon-YIG phonon entanglement. Photon-magnon-YIG phonon and photon-magnon-membrane phonon entanglements can also be realized in the system. These two types of tripartite entanglements can be easily transferred from one type to the other by adjusting the detuning or dissipation ratio. Moreover, the bipartite and tripartite entanglements and their transfer are all robust against temperature. Furthermore, by introducing supermodes formed by the photon and magnon modes, we find that the entanglement between the two mechanical modes can be obtained under the condition of an extremely low temperature. And the effective detuning region of the YIG phonon-membrane phonon entanglement is complementary to the detuning regions of other bipartite entanglements. Our results indicate that the combination of cavity magnomechanical and optomechanical systems could provide more flexible controllability of bipartite and tripartite entanglements and their transfer and could serve as a potential quantum interface among microwave, magnon, and mechanical systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] ENTANGLEMENT TRANSFER IN A MULTIPARTITE CAVITY QED OPEN SYSTEM
    Bina, Matteo
    Casagrande, Federico
    Lulli, Alfredo
    Genoni, Marco G.
    Paris, Matteo G. A.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 : 83 - 92
  • [32] Transfer and preservation of entanglement in a hybrid optomechanical system
    Zhang, Qiankun
    Zhang, Xiangyang
    Liu, Lianzhen
    [J]. PHYSICAL REVIEW A, 2017, 96 (04)
  • [33] Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System
    Yang, Zhi-Bo
    Liu, Jin-Song
    Zhu, Ai-Dong
    Liu, Hong-Yu
    Yang, Rong-Can
    [J]. ANNALEN DER PHYSIK, 2020, 532 (09)
  • [34] Tripartite entanglement witnesses and entanglement sudden death
    Weinstein, Yaakov S.
    [J]. PHYSICAL REVIEW A, 2009, 79 (01):
  • [35] Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field
    Zhang, Wei
    Wang, Tie
    Han, Xue
    Zhang, Shou
    Wang, Hong-Fu
    [J]. OPTICS EXPRESS, 2022, 30 (07) : 10969 - 10980
  • [36] Condition for tripartite entanglement
    Solomon, Allan I.
    Ho, Choon-Lin
    [J]. 7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [37] Dynamics of tripartite entanglement
    Sharma, SS
    Sharma, NK
    [J]. PHYSICA SCRIPTA, 2005, T118 : 272 - 275
  • [38] Toward tripartite hybrid entanglement in quantum dot molecules
    Khoshnegar, M.
    Jafari-Salim, A.
    Ansari, M. H.
    Majedi, A. H.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [39] Detection of genuine tripartite entanglement and steering in hybrid optomechanics
    Xiang, Y.
    Sun, F. X.
    Wang, M.
    Gong, Q. H.
    He, Q. Y.
    [J]. OPTICS EXPRESS, 2015, 23 (23): : 30104 - 30117
  • [40] Facets of tripartite entanglement
    Dipankar Home
    [J]. Pramana, 2001, 56 : 179 - 187