MULTIPLE SOLUTIONS FOR A KIRCHHOFF-TYPE FRACTIONAL COUPLED PROBLEM WITH P-LAPLACIAN

被引:0
|
作者
Wang, Yi [1 ]
Tian, Lixin [2 ]
Dong, Minjie [3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
[3] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
来源
关键词
Kirchhoff-type fractional equation; p-Laplacian operator; varia-tional methods; critical point theory; BOUNDARY-VALUE-PROBLEMS;
D O I
10.11948/20220341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we look at a class of two-parameters coupled Kirchhoff -type fractional differential equations. Two differentiated methods are used to prove the existence of two solutions to the equation. The fundamental differ-ence between the two methods is that the first provides asymptotic conditions for the non-linear terms on the right-hand side of the equation, while the second provides algebraic conditions; both methods combine substantial A-R conditions.
引用
收藏
页码:1535 / 1555
页数:21
相关论文
共 50 条
  • [41] On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity
    Nguyen Van Thin
    Mingqi Xiang
    Binlin Zhang
    Mediterranean Journal of Mathematics, 2021, 18
  • [42] On the Cauchy problem for Kirchhoff equations of p-Laplacian type
    Kajitani, K
    JEAN LERAY '99 CONFERENCE PROCEEDINGS: THE KARLSKRONA CONFERENCE IN HONOR OF JEAN LERAY, 2003, 24 : 355 - +
  • [43] Three solutions for a fractional p-Laplacian problem
    Weiqiang Zhang
    Jiabin Zuo
    Peihao Zhao
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [44] Three solutions for a fractional p-Laplacian problem
    Zhang, Weiqiang
    Zuo, Jiabin
    Zhao, Peihao
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (04)
  • [45] Existence and multiplicity of solutions for (p,q)-Laplacian Kirchhoff-type fractional differential equations with impulses
    Wang, Yi
    Tian, Lixin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (13) : 14177 - 14199
  • [46] Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian
    Liu, Senli
    Chen, Haibo
    Yang, Jie
    Su, Yu
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [47] Existence and multiplicity of solutions for fractional p-Laplacian Schrodinger-Kirchhoff type equations
    Nyamoradi, Nemat
    Zaidan, Lahib Ibrahim
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (03) : 346 - 359
  • [48] Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian
    Senli Liu
    Haibo Chen
    Jie Yang
    Yu Su
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [49] Existence and multiplicity of solutions for a class of fractional Kirchhoff-type problem
    Sun, Gaofeng
    Teng, Kaimin
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 183 - 194
  • [50] Nontrivial Solutions of the Kirchhoff-Type Fractionalp-Laplacian Dirichlet Problem
    Chen, Taiyong
    Liu, Wenbin
    Jin, Hua
    JOURNAL OF FUNCTION SPACES, 2020, 2020