Phosphate-based geopolymer: Influence of municipal solid waste fly ash introduction on structure and compressive strength

被引:14
|
作者
Bernasconi, Davide [1 ]
Viani, Alberto [2 ]
Zarybnicka, Lucie [2 ]
Macova, Petra [2 ]
Bordignon, Simone [3 ]
Caviglia, Caterina [1 ]
Destefanis, Enrico [1 ]
Gobetto, Roberto [3 ]
Pavese, Alessandro [1 ]
机构
[1] Univ Turin, Earth Sci Dept, I-10125 Turin, Italy
[2] Czech Acad Sci, Inst Theoret & Appl Mech, Ctr Telc, Proseck 809-76, Prague 19000 9, Czech Republic
[3] Univ Turin, Chem Dept, I-10125 Turin, Italy
关键词
Phosphate geopolymers; Municipal solid waste fly ash; Metakaolin; Phosphate cement; ACID-BASED GEOPOLYMERS; NMR; BRUSHITE; CEMENT;
D O I
10.1016/j.ceramint.2023.04.042
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Materials resulting from incorporation of solid waste incineration fly ash into phosphate-based geopolymers, to partially replace metakaolin (up to 50% wt), were studied. X-ray diffraction, scanning electron microscopy, solid-state nuclear magnetic resonance spectroscopy and infrared spectroscopy were adopted to describe the miner-alogical changes and the structural modifications of the geopolymer networks which impacted on the mechanical performance (compressive strength) of the materials. The results indicated that fly ash displays a different reactivity compared with metakaolin, behaving preferentially as a source of alkali that compete with the aluminosilicate metakaolin fraction by precipitating crystalline and amorphous phosphates. At 10 wt% of metakaolin substitution with fly ash, the extent and reticulation of the amorphous geopolymer matrix is pre-served, and the mechanical properties are retained. At higher waste content (30-50% wt), the fast kinetics of the acid-base reactions involving the fly ash reactive phases prevail over the metakaolin dealumination, and the nature of the material shifts to an alkali-phosphate cement/phosphate-geopolymer composite. This behaviour, together with the development of porosity and presence of low-strength phases in the ash, led to a decline in the mechanical performance with increasing amount of substitution. All in all, this work provides fundamental in-formation in the direction of a sustainable employment of phosphate-based geopolymers, which is limited by the relatively high cost of both metakaolin and phosphoric acid. Moreover, it indicates a recycling opportunity for this type of fly ash.
引用
收藏
页码:22149 / 22159
页数:11
相关论文
共 50 条
  • [21] The influence of curing periods on the compressive strength of fly ash-based geopolymer at different aging times
    Abdulkareem, Omar A.
    Al Bakri, A. M. Mustafa
    Kamarudin, H.
    Nizar, I. Khairul
    ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 512 - +
  • [22] Optimum mix for fly ash geopolymer binder based on workability and compressive strength
    Arafa, S. A.
    Ali, A. Z. M.
    Awal, A. S. M. A.
    Loon, L. Y.
    4TH INTERNATIONAL CONFERENCE ON CIVIL AND ENVIRONMENTAL ENGINEERING FOR SUSTAINABILITY (ICONCEES 2017), 2018, 140
  • [23] Effect Of Crumb Rubber On Compressive Strength Of Fly Ash Based Geopolymer Concrete
    Azmi, Ahmad Azrem
    Abdullah, Mohd Mustafa Al Bakri
    Ghazali, Che Mohd Ruzaidi
    Sandu, Andrei Victor
    Hussin, Kamarudin
    2ND INTERNATIONAL CONFERENCE ON GREEN DESIGN AND MANUFACTURE 2016 (ICONGDM 2016), 2016, 78
  • [24] Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures
    Shaikh, F. U. A.
    Vimonsatit, V.
    FIRE AND MATERIALS, 2015, 39 (02) : 174 - 188
  • [25] Optimization of Alkaline Activator/fly ASH Ratio on The Compressive Strength of Manufacturing Fly ASH-BASED Geopolymer
    Al Bakri, A. M. Mustafa
    Kamarudin, H.
    Karem, Omar A. K. A.
    Ruzaidi, C. M.
    Rafiza, A. R.
    Norazian, M. N.
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 734 - +
  • [26] Compressive strength of laterite soil stabilized with rice straw ash and fly ash based geopolymer
    Rangan, P. R.
    Irmawaty, R.
    Amiruddin, A. A.
    Bakri, B.
    3RD INTERNATIONAL CONFERENCE ON CIVIL AND ENVIRONMENTAL ENGINEERING (ICCEE 2019), 2020, 419
  • [27] Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash
    Tho-In, Tawatchai
    Sata, Vanchai
    Boonserm, Kornkanok
    Chindaprasirt, Prinya
    JOURNAL OF CLEANER PRODUCTION, 2018, 172 : 2892 - 2898
  • [28] Investigation on the behavior of fly ash phosphate-based geopolymer stabilized acidic lead contaminated soil
    Pu, Shaoyun
    Yao, Huiran
    Wu, Zhonghu
    Cai, Guojun
    Duan, Wei
    Wang, Anhui
    Wu, Jun
    Li, Yonghui
    Xu, Bomin
    Shen, Zewei
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [29] STRENGTH OF CONCRETE CONTAINING MUNICIPAL SOLID-WASTE FLY-ASH
    HAMERNIK, JD
    FRANTZ, GC
    ACI MATERIALS JOURNAL, 1991, 88 (05) : 508 - 517
  • [30] Effect of Municipal Solid Waste Incineration Fly Ash on the Mechanical Properties and Microstructure of Geopolymer Concrete
    Niu, Mengya
    Zhang, Peng
    Guo, Jinjun
    Wang, Jia
    GELS, 2022, 8 (06)