A multi-tissue gene expression dataset for hibernating brown bears

被引:0
|
作者
Perry, Blair W. [1 ]
Saxton, Michael W. [1 ]
Jansen, Heiko T. [2 ]
Quackenbush, Corey R. [1 ]
Hutzenbiler, Brandon D. Evans D. [1 ]
Robbins, Charles T. [1 ,3 ]
Kelley, Joanna L. [4 ]
Cornejo, Omar E. [4 ]
机构
[1] Washington State Univ, Sch Biol Sci, Pullman, WA 99164 USA
[2] Washington State Univ, Dept Integrat Physiol & Neurosci, Pullman, WA 99164 USA
[3] Washington State Univ, Sch Environm, Pullman, WA 99164 USA
[4] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95060 USA
来源
BMC GENOMIC DATA | 2023年 / 24卷 / 01期
基金
美国食品与农业研究所;
关键词
Gene expression; Hibernation; Transcriptomics; Brown bears; MAMMALIAN HIBERNATION; PHYSIOLOGY; MODEL;
D O I
10.1186/s12863-023-01136-3
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
ObjectivesComplex physiological adaptations often involve the coordination of molecular responses across multiple tissues. Establishing transcriptomic resources for non-traditional model organisms with phenotypes of interest can provide a foundation for understanding the genomic basis of these phenotypes, and the degree to which these resemble, or contrast, those of traditional model organisms. Here, we present a one-of-a-kind gene expression dataset generated from multiple tissues of two hibernating brown bears (Ursus arctos).Data descriptionThis dataset is comprised of 26 samples collected from 13 tissues of two hibernating brown bears. These samples were collected opportunistically and are typically not possible to attain, resulting in a highly unique and valuable gene expression dataset. In combination with previously published datasets, this new transcriptomic resource will facilitate detailed investigation of hibernation physiology in bears, and the potential to translate aspects of this biology to treat human disease.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Long-read isoform sequencing reveals tissue-specific isoform expression between active and hibernating brown bears (Ursus arctos)
    Tseng, Elizabeth
    Underwood, Jason G.
    Hutzenbiler, Brandon D. Evans
    Trojahn, Shawn
    Kingham, Brewster
    Shevchenko, Olga
    Bernberg, Erin
    Vierra, Michelle
    Robbins, Charles T.
    Jansen, Heiko T.
    Kelley, Joanna L.
    G3-GENES GENOMES GENETICS, 2022, 12 (03):
  • [32] An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset
    Kelly Payette
    Priscille de Dumast
    Hamza Kebiri
    Ivan Ezhov
    Johannes C. Paetzold
    Suprosanna Shit
    Asim Iqbal
    Romesa Khan
    Raimund Kottke
    Patrice Grehten
    Hui Ji
    Levente Lanczi
    Marianna Nagy
    Monika Beresova
    Thi Dao Nguyen
    Giancarlo Natalucci
    Theofanis Karayannis
    Bjoern Menze
    Meritxell Bach Cuadra
    Andras Jakab
    Scientific Data, 8
  • [33] Skeletal muscles of hibernating brown bears are unusually resistant to effects of denervation
    Lin, David C.
    Hershey, John D.
    Mattoon, John S.
    Robbins, Charles T.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2012, 215 (12): : 2081 - 2087
  • [34] An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset
    Payette, Kelly
    de Dumast, Priscille
    Kebiri, Hamza
    Ezhov, Ivan
    Paetzold, Johannes C.
    Shit, Suprosanna
    Iqbal, Asim
    Khan, Romesa
    Kottke, Raimund
    Grehten, Patrice
    Ji, Hui
    Lanczi, Levente
    Nagy, Marianna
    Beresova, Monika
    Nguyen, Thi Dao
    Natalucci, Giancarlo
    Karayannis, Theofanis
    Menze, Bjoern
    Bach Cuadra, Meritxell
    Jakab, Andras
    SCIENTIFIC DATA, 2021, 8 (01)
  • [35] Plasma proteomics data from hibernating and active Scandinavian brown bears
    Frobert, Anne Mette
    Gregersen, Simon
    Brohus, Malene
    Welinder, Karen G.
    Kindberg, Jonas
    Frobert, Ole
    Overgaard, Michael T.
    DATA IN BRIEF, 2022, 41
  • [36] Multi-tissue gene expression profiling of cows with a genetic predisposition for low and high milk urea levels
    Reyer, Henry
    Honerlagen, Hanne
    Oster, Michael
    Ponsuksili, Siriluck
    Kuhla, Bjoern
    Wimmers, Klaus
    ANIMAL BIOTECHNOLOGY, 2024, 35 (01)
  • [37] Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation
    Keele, Gregory R.
    Quach, Bryan C.
    Israel, Jennifer W.
    Chappell, Grace A.
    Lewis, Lauren
    Safi, Alexias
    Simon, Jeremy M.
    Cotney, Paul
    Crawford, Gregory E.
    Valdar, William
    Rusyn, Ivan
    Furey, Terrence S.
    PLOS GENETICS, 2020, 16 (01):
  • [38] Landscape of multi-tissue global gene expression reveals the regulatory signatures of feed efficiency in beef cattle
    Sun, Hui-Zeng
    Zhao, Ke
    Zhou, Mi
    Chen, Yanhong
    Guan, Le Luo
    BIOINFORMATICS, 2019, 35 (10) : 1712 - 1719
  • [39] Multi-Tissue Cancer Classification of Gene Expressions using Deep Learning
    Khorshed, Tarek
    Moustafa, Mohamed N.
    Rafea, Ahmed
    2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2020), 2020, : 129 - 136
  • [40] Deep Learning for Multi-Tissue Cancer Classification of Gene Expressions (GeneXNet)
    Khorshed, Tarek
    Moustafa, Mohamed N.
    Rafea, Ahmed
    IEEE ACCESS, 2020, 8 : 90615 - 90629