Fabrication of polycaprolactone/chitosan/hydroxyapatite structure to improve the mechanical behavior of the hydrogel-based scaffolds for bone tissue engineering: Biscaffold approach

被引:8
|
作者
Salami, Sajjad Jedari [1 ]
Soleimanimehr, Hamid [1 ]
Maghsoudpour, Adel [1 ]
Etemadi Haghighi, Shahram [1 ]
机构
[1] Islamic Azad Univ, Dept Mech Engn, Sci & Res Branch, Tehran, Iran
关键词
3D printing; bone tissue engineering; chitosan; hybrid scaffolds; polycaprolactone;
D O I
10.1002/pc.27428
中图分类号
TB33 [复合材料];
学科分类号
摘要
The main idea of this study is to create a 3D printed scaffold to improve the mechanical behavior of hydrogels for bone tissue engineering. This paper investigated the effects of infill percentage and strand diameter on the 3D printed polycaprolactone/Chitosan/HA scaffold's mechanical properties. The printing parameters were optimized by central composite design in response surface methodology. The X, Y, and Z axes measured stiffness (N/m), compressive strength (MPa), and elongation at break (%). The results showed that the highest stiffness of all samples (in both vertical (65 MPa) and horizontal (32 MPa) loading dimensions) could be found in the scaffolds with 40% infill and the strands with 400 mu m diameter. It was also indicated that the degradability of the samples could be improved (0.33%-1.03%) with a reduction of strand diameter from 600 to 400 mu m. The most swelling was attributed to the scaffold with 50% infill and strand diameter of 600 mu m. Hydrophilicity was improved by employing chitosan (78.3 degrees -66.3 degrees). Results depicted good biocompatibility (>80%) of the samples. To sum up, the idea of a biscaffold with suitable engineering can be a good idea to enhance the mechanical behavior of hydrogel-based scaffolds.
引用
收藏
页码:4641 / 4653
页数:13
相关论文
共 50 条
  • [1] Hydrogel-based scaffolds for bone and cartilage tissue engineering and regeneration
    Amiryaghoubi, Nazanin
    Fathi, Marziyeh
    Barar, Jaleh
    Omidi, Yadollah
    REACTIVE & FUNCTIONAL POLYMERS, 2022, 177
  • [2] Hydrogel-Based Scaffolds in Oral Tissue Engineering
    Ayala-Ham, Alfredo
    Lopez-Gutierrez, Jorge
    Bermudez, Mercedes
    Aguilar-Medina, Maribel
    Sarmiento-Sanchez, Juan Ignacio
    Lopez-Camarillo, Cesar
    Sanchez-Schmitz, Guzman
    Ramos-Payan, Rosalio
    FRONTIERS IN MATERIALS, 2021, 8
  • [3] Hydrothermal fabrication of hydroxyapatite/chitosan/carbon porous scaffolds for bone tissue engineering
    Long, Teng
    Liu, Yu-Tai
    Tang, Sha
    Sun, Jin-Liang
    Guo, Ya-Ping
    Zhu, Zhen-An
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (08) : 1740 - 1748
  • [4] Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering
    Sani, Iman Shirzaei
    Rezaei, Mostafa
    Khoshfetrat, Ali Baradar
    Razzaghi, Donya
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 182 : 1638 - 1649
  • [5] Biopolymer-based polycaprolactone-hydroxyapatite scaffolds for bone tissue engineering
    Aminatun
    Suciati, Tri
    Sari, Yessie Widya
    Sari, Mona
    Alamsyah, Kartika A.
    Purnamasari, Wulan
    Yusuf, Yusril
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2023, 72 (05) : 376 - 385
  • [6] Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior
    Rezania, Naghme
    Asadi-Eydivand, Mitra
    Abolfathi, Nabiollah
    Bonakdar, Shahin
    Mehrjoo, Morteza
    Solati-Hashjin, Mehran
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2022, 33 (03)
  • [7] Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior
    Naghme Rezania
    Mitra Asadi-Eydivand
    Nabiollah Abolfathi
    Shahin Bonakdar
    Morteza Mehrjoo
    Mehran Solati-Hashjin
    Journal of Materials Science: Materials in Medicine, 2022, 33
  • [8] Biocompatibility of hydrogel-based scaffolds for tissue engineering applications
    Naahidi, Sheva
    Jafari, Mousa
    Logan, Megan
    Wang, Yujie
    Yuan, Yongfang
    Bae, Hojae
    Dixon, Brian
    Chen, P.
    BIOTECHNOLOGY ADVANCES, 2017, 35 (05) : 530 - 544
  • [9] Injectable hydrogel-based scaffolds for tissue engineering applications
    Portnov, Tanya
    Shulimzon, Tiberiu R.
    Zilberman, Meital
    REVIEWS IN CHEMICAL ENGINEERING, 2017, 33 (01) : 91 - 107
  • [10] Fabrication and In Vitro Evaluation of Nanosized Hydroxyapatite/Chitosan-Based Tissue Engineering Scaffolds
    Sun, Tao
    Khan, Tareef Hayat
    Sultana, Naznin
    JOURNAL OF NANOMATERIALS, 2014, 2014