Hydrogel-based scaffolds for bone and cartilage tissue engineering and regeneration

被引:20
|
作者
Amiryaghoubi, Nazanin [1 ]
Fathi, Marziyeh [1 ]
Barar, Jaleh [1 ,2 ]
Omidi, Yadollah [3 ]
机构
[1] Tabriz Univ, Med Sci, Biomed Inst, Res Ctr Pharmaceut Nanotechnol, Tabriz, Iran
[2] Tabriz Univ, Med Sci, Fac Pharm, Dept Pharmaceut, Tabriz, Iran
[3] Nova Southeastern Univ, Coll Pharm, Dept Pharmaceut Sci, Ft Lauderdale, FL 33328 USA
来源
关键词
Bone; Cartilage; Hydrogel; 3D printing; Tissue engineering; CROSS-LINKABLE HYDROGELS; MAGNETIC NANOCOMPOSITE HYDROGEL; LINKED CHITOSAN HYDROGELS; INJECTABLE HYDROGELS; STEM-CELLS; MECHANICAL-PROPERTIES; COMPOSITE HYDROGELS; STROMAL CELLS; DELIVERY; DIFFERENTIATION;
D O I
10.1016/j.reactfunctpolym.2022.105313
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Tissue engineering to replace an injured/defective organ is considered a complex process by which the required biological functionalities are restored. As an effective strategy to restore the damaged tissue/organs, tissue regeneration is based on the use of safe scaffolds supplemented with necessary bioactive substances and incorporated with live cells. To have the maximal biological impacts, the cells are incorporated into a safe bioactive scaffold and implanted for regenerating the desired tissue of the defected organ. Such a complex process is largely dependent on (i) the physicochemical properties of the scaffold used, (ii) the integrity of the incorporated cells, and (iii) the biological setting in which the cell-embedded scaffold is implanted. In bone and cartilage tissue engineering, advanced biomimetic hydrogels offer a remarkable 3D matrix with desired prop-erties, upon which they can permissively accommodate the embodied cells. Advanced bioactive hydrogels offer extraordinary features, including safety and biocompatibility, high water absorption capacity, resemblance to the normal extracellular matrix, mechanical strength, capability to accommodate cells, and potential to incorporate the necessary substances such as growth factors necessary for tissue regeneration, and flexibility in production. The current review aims to provide deep insights into the design, fabrication techniques of hydrogels, and application of bioactive substances for the regeneration of bone and cartilage tissues.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Advances of injectable hydrogel-based scaffolds for cartilage regeneration
    Li, Jiawei
    Chen, Guojun
    Xu, Xingquan
    Abdou, Peter
    Jiang, Qing
    Shi, Dongquan
    Gu, Zhen
    [J]. REGENERATIVE BIOMATERIALS, 2019, 6 (03) : 129 - 140
  • [2] Hydrogel-Based Scaffolds in Oral Tissue Engineering
    Ayala-Ham, Alfredo
    Lopez-Gutierrez, Jorge
    Bermudez, Mercedes
    Aguilar-Medina, Maribel
    Sarmiento-Sanchez, Juan Ignacio
    Lopez-Camarillo, Cesar
    Sanchez-Schmitz, Guzman
    Ramos-Payan, Rosalio
    [J]. FRONTIERS IN MATERIALS, 2021, 8
  • [3] Biofunctionalization of hydrogel-based scaffolds for vascular tissue regeneration
    Lopez-Gutierrez, Jorge
    Ramos-Payan, Rosalio
    Ayala-Ham, Alfredo
    Geovanni Romero-Quintana, Jose
    Castillo-Ureta, Hipolito
    Villegas-Mercado, Carlos
    Bermudez, Mercedes
    Sanchez-Schmitz, Guzman
    Aguilar-Medina, Maribel
    [J]. FRONTIERS IN MATERIALS, 2023, 10
  • [4] Heterogeneity is key to hydrogel-based cartilage tissue regeneration
    Sridhar, Shankar Lalitha
    Schneider, Margaret C.
    Chu, Stanley
    de Roucy, Gaspard
    Bryant, Stephanie J.
    Vernerey, Franck J.
    [J]. SOFT MATTER, 2017, 13 (28) : 4841 - 4855
  • [5] Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering
    Tolabi, Hamidreza
    Davari, Niyousha
    Khajehmohammadi, Mehran
    Malektaj, Haniyeh
    Nazemi, Katayoun
    Vahedi, Samaneh
    Ghalandari, Behafarid
    Reis, Rui L.
    Ghorbani, Farnaz
    Oliveira, Joaquim Miguel
    [J]. ADVANCED MATERIALS, 2023, 35 (26)
  • [6] Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering
    Abdollahiyan, Parinaz
    Oroojalian, Fatemeh
    Mokhtarzadeh, Ahad
    de la Guardia, Miguel
    [J]. BIOTECHNOLOGY JOURNAL, 2020, 15 (12)
  • [7] Biocompatibility of hydrogel-based scaffolds for tissue engineering applications
    Naahidi, Sheva
    Jafari, Mousa
    Logan, Megan
    Wang, Yujie
    Yuan, Yongfang
    Bae, Hojae
    Dixon, Brian
    Chen, P.
    [J]. BIOTECHNOLOGY ADVANCES, 2017, 35 (05) : 530 - 544
  • [8] Injectable hydrogel-based scaffolds for tissue engineering applications
    Portnov, Tanya
    Shulimzon, Tiberiu R.
    Zilberman, Meital
    [J]. REVIEWS IN CHEMICAL ENGINEERING, 2017, 33 (01) : 91 - 107
  • [9] Advances of Hydrogel-Based Bioprinting for Cartilage Tissue Engineering
    Han, Xue
    Chang, Shuai
    Zhang, Mingming
    Bian, Xiangbing
    Li, Chunlin
    Li, Dawei
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [10] Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue
    Samiei, Mohammad
    Fathi, Marziyeh
    Barar, Jaleh
    Fathi, Nazanin
    Amiryaghoubi, Nazanin
    Omidi, Yadollah
    [J]. JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2021, 64