A review on pillared clay-based catalysts for low-temperature selective catalytic reduction of NOx with hydrocarbons

被引:12
|
作者
Kashif, Muhammad [1 ,2 ,3 ]
Yuan, Minhao [3 ,4 ]
Su, Yaxin [3 ]
Heynderickx, Philippe M. [1 ,2 ]
Memon, Asadullah [5 ]
机构
[1] Univ Ghent, Ctr Environm & Energy Res CEER, Global Campus,119-5 Songdomunhwa Ro, Incheon 406840, South Korea
[2] Univ Ghent, Fac Biosci Engn, Dept Green Chem & Technol, Coupure Links 653, B-9000 Ghent, Belgium
[3] Donghua Univ, Coll Environm Sci & Engn, Shanghai 201620, Peoples R China
[4] Environm Protect Agcy, Shanghai 200444, Peoples R China
[5] Mehran Univ Engn & Technol SZAB, Dept Petr & Nat Gas Engn, Campus Khairpur Mirs, Sindh, Pakistan
基金
中国国家自然科学基金;
关键词
Montmorillonite; Pillared interlayered clay; Low-temperature selective catalytic reduction; NOx; Hydrocarbons; WASTE-WATER TREATMENT; CU/AL-CE-PILC; NITRIC-OXIDE; NITROGEN-OXIDES; EXCESS OXYGEN; CALCINATION TEMPERATURE; MONOLITHIC CATALYSTS; CARBON-MONOXIDE; AL-FE; TI;
D O I
10.1016/j.clay.2023.106847
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strict air pollution restrictions have increased the need for effective low-temperature selective catalytic reduction (LT-SCR) of NOx with hydrocarbons (HC), and as such, mixed metal oxides and clay minerals supported catalysts have received significant attention. Pillared interlayered clay (PILC) materials use clay mineral as a raw material for catalyst support coupled with metal oxide particles to provide a porous structure between clay mineral layers through ion exchange. PILC has been widely used in catalysis and adsorption applications, due to its meso-microporous structure, good surface acidity, large specific surface area, adjustable pore size, interlayer ion -exchange nature, and good thermal stability. It is a widely used catalyst carrier material with excellent per-formance for LT-SCR of NOx with HC. Notably, the montmorillonite (Mt) based Cu-and Fe-PILC catalysts exhibited a high LT-SCR activity, which can be assigned to the excellent redox capability of the co-existing FeIII/ FeII and CuII/CuI. In addition, the presence of CuII isolated species, as well as the strong interaction between Fe, Cu, and PILC support is believed to increase the SCR activity. This review study is primarily focused on the clay mineral importance and Mt-based PILC-supported catalysts for LT-SCR of NOx with HC. In addition, the SCR performances of various metals-supported PILC-based catalysts were compiled, in order to study their proposed reaction mechanisms, the influence of metal loading, effects of O2, H2O, and SO2 poisoning for HC-SCR of NOx conversion. This study provides a detailed review of Mt-based PILC catalysts for LT-SCR technology, including recent challenges and future prospects.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Pillared clay and zirconia-based monolithic catalysts for selective catalytic reduction of nitric oxide by methane
    Bahamonde, A
    Mohino, F
    Rebollar, M
    Yates, M
    Avila, P
    Mendioroz, S
    CATALYSIS TODAY, 2001, 69 (1-4) : 233 - 239
  • [32] Recent progress of low-temperature selective catalytic reduction of NOx with NH3 over manganese oxide-based catalysts
    Guo, Rui-tang
    Qin, Bo
    Wei, Lin-gang
    Yin, Tian-yi
    Zhou, Jue
    Pan, Wei-guo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (11) : 6363 - 6382
  • [33] Reactions and Mechanisms of Low-Temperature Selective Catalytic Reduction of NOx by NH3 over Manganese Oxide-Based Catalysts
    Sun Liang
    Xu Youjia
    Cao Qingqing
    Hu Bingqing
    Wang Chao
    Jing Guohua
    PROGRESS IN CHEMISTRY, 2010, 22 (10) : 1882 - 1891
  • [34] Cobalt doped Fe-Mn@CNTs catalysts with highly stability for low-temperature selective catalytic reduction of NOx
    Li, Pengfei
    Zhang, Tiezhen
    Sun, Haixiao
    Gao, Yufeng
    Zhang, Yanyuan
    Liu, Yuanyuan
    Ge, Chengmin
    Chen, Hao
    Dai, Xiaoping
    Zhang, Xin
    NANO RESEARCH, 2022, 15 (04) : 3001 - 3009
  • [35] Investigation of low-temperature selective catalytic reduction of NOx with ammonia over Cr-promoted Fe/AC catalysts
    Tingting Ge
    Baozhong Zhu
    Yunlan Sun
    Weiyi Song
    Qilong Fang
    Yuxiu Zhong
    Environmental Science and Pollution Research, 2019, 26 : 33067 - 33075
  • [36] Cobalt doped Fe-Mn@CNTs catalysts with highly stability for low-temperature selective catalytic reduction of NOx
    Pengfei Li
    Tiezhen Zhang
    Haixiao Sun
    Yufeng Gao
    Yanyuan Zhang
    Yuanyuan Liu
    Chengmin Ge
    Hao Chen
    Xiaoping Dai
    Xin Zhang
    Nano Research, 2022, 15 : 3001 - 3009
  • [37] Investigation of low-temperature selective catalytic reduction of NOx with ammonia over Cr-promoted Fe/AC catalysts
    Ge, Tingting
    Zhu, Baozhong
    Sun, Yunlan
    Song, Weiyi
    Fang, Qilong
    Zhong, Yuxiu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (32) : 33067 - 33075
  • [38] Progresses in the NOX Elimination Using Zeolite Under Low-Temperature Ammonia-Based Selective Catalytic Reduction-A Review
    Kumar, M. Sunil
    Srinivasan, S.A.
    Alphin, M.S.
    Mustafa, B.
    Selvaraj, Senthil Kumaran
    Advances in Materials Science and Engineering, 2024, 2024
  • [39] Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3
    Tang, Changjin
    Zhang, Hongliang
    Dong, Lin
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (05) : 1248 - 1264
  • [40] Low-temperature Fe-MnO2 nanotube catalysts for the selective catalytic reduction of NOx with NH3
    Fan, Hao
    Fan, Jie
    Chang, Tian
    Wang, Xiuru
    Wang, Xin
    Huang, Yu
    Zhang, Yang
    Shen, Zhenxing
    CATALYSIS SCIENCE & TECHNOLOGY, 2021, 11 (19) : 6553 - 6563