Canonical and non-canonical functions of STAT in germline stem cell maintenance

被引:1
|
作者
Xing, Yalan [1 ,2 ,3 ]
Larson, Kimberly [1 ,2 ,4 ]
Li, Jinghong [1 ]
Li, Willis X. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Med, La Jolla, CA USA
[2] Univ Rochester Med Ctr, Dept Biomed Genet, Rochester, NY USA
[3] Meta, Bellevue, WA USA
[4] Boehringer Ingelheim GmbH & Co KG, Fremont, CA USA
基金
美国国家卫生研究院;
关键词
Drosophila; germline stem cell; heterochromatin; non-canonical STAT; BAG-OF-MARBLES; SELF-RENEWAL; DROSOPHILA TESTIS; HETEROCHROMATIN; NICHE; DIFFERENTIATION; PROLIFERATION; ACTIVATION; EXPRESSION; PROTEINS;
D O I
10.1002/dvdy.576
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
BackgroundMaintenance of the Drosophila male germline stem cells (GSCs) requires activation of the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway by niche signals. The precise role of JAK/STAT signaling in GSC maintenance, however, remains incompletely understood. ResultsHere, we show that, GSC maintenance requires both canonical and non-canonical JAK/STAT signaling, in which unphosphorylated STAT (uSTAT) maintains heterochromatin stability by binding to heterochromatin protein 1 (HP1). We found that GSC-specific overexpressing STAT, or even the transcriptionally inactive mutant STAT, increases GSC number and partially rescues the GSC-loss mutant phenotype due to reduced JAK activity. Furthermore, we found that both HP1 and STAT are transcriptional targets of the canonical JAK/STAT pathway in GSCs, and that GSCs exhibit higher heterochromatin content. ConclusionsThese results suggest that persistent JAK/STAT activation by niche signals leads to the accumulation of HP1 and uSTAT in GSCs, which promote heterochromatin formation important for maintaining GSC identity. Thus, the maintenance of Drosophila GSCs requires both canonical and non-canonical STAT functions within GSCs for heterochromatin regulation.
引用
收藏
页码:728 / 741
页数:14
相关论文
共 50 条
  • [21] Non-canonical functions of cell cycle regulators in differentiated neurons
    Schmetsdorf, S.
    Gaertner, U.
    Arendt, T.
    JOURNAL OF NEURAL TRANSMISSION, 2007, 114 (07) : CXXII - CXXII
  • [22] Canonical and non-canonical functions of C1s in cancer
    Revel, Margot
    Daugan, Marie
    Gaboriaud, Christine
    Sautes-Fridman, Catherine
    Fridman, Wolf Herman
    Roumenina, Lubka
    MOLECULAR IMMUNOLOGY, 2022, 141 : 143 - 143
  • [23] Both Canonical and Non-Canonical Wnt Signaling Independently Promote Stem Cell Growth in Mammospheres
    Many, Alexander M.
    Brown, Anthony M. C.
    PLOS ONE, 2014, 9 (07):
  • [24] Circular RNAs: Non-Canonical Observations on Non-Canonical RNAs
    Stringer, Brett W.
    Gantley, Laura
    Conn, Simon J.
    CELLS, 2023, 12 (02)
  • [25] Canonical and non-canonical adenosinergic pathways
    Ferretti, E.
    Horenstein, A. L.
    Canzonetta, C.
    Costa, F.
    Morandi, F.
    IMMUNOLOGY LETTERS, 2019, 205 : 25 - 30
  • [26] Subjects in constructions - Canonical and non-canonical
    Holvoet, Axel
    CONSTRUCTIONS AND FRAMES, 2018, 10 (01) : 98 - 105
  • [27] CANONICAL AND NON-CANONICAL NOTCH LIGANDS
    D'Souza, Brendan
    Meloty-Kapella, Laurence
    Weinmaster, Gerry
    NOTCH SIGNALING, 2010, 92 : 73 - 129
  • [28] Canonical and Non-canonical Reelin Signaling
    Bock, Hans H.
    May, Petra
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2016, 10
  • [29] ROLE OF WNT NON-CANONICAL PATHWAY IN MAINTENANCE OF COLON CANCER STEM CELLS
    Bhattacharya, Aditi
    Dey, Devanjan
    Manhas, Janvie
    Bhat, Muzaffar
    Kumar, Jayanth
    Deo, S. V. S.
    Pal, Sujoy
    Parshad, Rajinder
    Das, Prasenjit
    Sen, Sudip
    GASTROENTEROLOGY, 2020, 158 (06) : S293 - S293
  • [30] Dynamics and non-canonical aspects of JAK/STAT signalling
    Mohr, Anne
    Chatain, Nicolas
    Domoszlai, Tamas
    Rinis, Natalie
    Sommerauer, Michael
    Vogt, Michael
    Mueller-Newen, Gerhard
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2012, 91 (6-7) : 524 - 532