Novel Comparative Study for the Detection of COVID-19 Using CT Scan and Chest X-ray Images

被引:7
|
作者
Hayat, Ahatsham [1 ,2 ,3 ]
Baglat, Preety [1 ,2 ,3 ]
Mendonca, Fabio [1 ,2 ,3 ]
Mostafa, Sheikh Shanawaz [2 ,3 ]
Morgado-Dias, Fernando [1 ,2 ,3 ]
机构
[1] Univ Madeira, P-9000082 Funchal, Portugal
[2] Interact Technol Inst ITI LARSyS, P-9020105 Funchal, Portugal
[3] ARDITI, P-9020105 Funchal, Portugal
关键词
COVID-19; CT scan; chest X-ray; machine learning; deep learning; DEEP; DIAGNOSIS;
D O I
10.3390/ijerph20021268
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The number of coronavirus disease (COVID-19) cases is constantly rising as the pandemic continues, with new variants constantly emerging. Therefore, to prevent the virus from spreading, coronavirus cases must be diagnosed as soon as possible. The COVID-19 pandemic has had a devastating impact on people's health and the economy worldwide. For COVID-19 detection, reverse transcription-polymerase chain reaction testing is the benchmark. However, this test takes a long time and necessitates a lot of laboratory resources. A new trend is emerging to address these limitations regarding the use of machine learning and deep learning techniques for automatic analysis, as these can attain high diagnosis results, especially by using medical imaging techniques. However, a key question arises whether a chest computed tomography scan or chest X-ray can be used for COVID-19 detection. A total of 17,599 images were examined in this work to develop the models used to classify the occurrence of COVID-19 infection, while four different classifiers were studied. These are the convolutional neural network (proposed architecture (named, SCovNet) and Resnet18), support vector machine, and logistic regression. Out of all four models, the proposed SCoVNet architecture reached the best performance with an accuracy of almost 99% and 98% on chest computed tomography scan images and chest X-ray images, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images
    Kumar, N.
    Gupta, M.
    Gupta, D.
    Tiwari, S.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (1) : 469 - 478
  • [32] Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images
    N. Kumar
    M. Gupta
    D. Gupta
    S. Tiwari
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 469 - 478
  • [33] COVID-19 and Pneumonia detection and web deployment from CT scan and X-ray images using deep learning
    Islam, Nahid
    Mohsin, Abu S. M.
    Choudhury, Shadab Hafiz
    Shaer, Tazwar Prodhan
    Islam, Md. Adnan
    Sadat, Omar
    Taz, Nahid Hossain
    PLOS ONE, 2024, 19 (07):
  • [34] ULNet for the detection of coronavirus (COVID-19) from chest X-ray images
    Wu, Tianbo
    Tang, Chen
    Xu, Min
    Hong, Nian
    Lei, Zhenkun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [35] Chest x-ray images: transfer learning model in COVID-19 detection
    Mao, Siqi
    Kulbayeva, Saltanat
    Osadchuk, Mikhail
    JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2025, 31 (01)
  • [36] Variational Autoencoder Based Imbalanced COVID-19 Detection Using Chest X-Ray Images
    Chatterjee, Sankhadeep
    Maity, Soumyajit
    Bhattacharjee, Mayukh
    Banerjee, Soumen
    Das, Asit Kumar
    Ding, Weiping
    NEW GENERATION COMPUTING, 2023, 41 (01) : 25 - 60
  • [37] Optimal Ensemble learning model for COVID-19 detection using chest X-ray images
    Balasubramaniam, S.
    Kumar, K. Satheesh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [38] Variational Autoencoder Based Imbalanced COVID-19 Detection Using Chest X-Ray Images
    Sankhadeep Chatterjee
    Soumyajit Maity
    Mayukh Bhattacharjee
    Soumen Banerjee
    Asit Kumar Das
    Weiping Ding
    New Generation Computing, 2023, 41 : 25 - 60
  • [39] FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
    Agrawal, Tarun
    Choudhary, Prakash
    EVOLVING SYSTEMS, 2022, 13 (04) : 519 - 533
  • [40] Detection of COVID-19 from Chest X-Ray Images Using Convolutional Neural Networks
    Sekeroglu, Boran
    Ozsahin, Ilker
    SLAS TECHNOLOGY, 2020, 25 (06): : 553 - 565