Motivated by artificial intelligence, we present a novel electronic skin (e-skin) system capable of dual-sensing pressure and temperature signals. Our approach utilizes laser-induced graphene and polydimethylsiloxane, offering a simple yet efficient method for e-skin preparation. Experimental results reveal exceptional performance with good pressure sensitivity (0.037 kPa-1 at 0-50 kPa), a wide detection range (0-220 kPa), a fast response time of 56 ms, an ultra-low detection limit (30 Pa), and excellent stability (8000 cycles). Additionally, the e-skin exhibits positive temperature coefficients (0.0025 degrees C-1) within 20-100 degrees C, a rapid response time of 2.57 s, an extremely low detection limit (1 degrees C), and stability after 50 cycles. Crucially, our intelligent e-skin system, employing a Long Short-Term Memory algorithm, enables real-time multi-modal tactile perception, accurately separating mixed pressure and temperature signals. This versatile technology holds immense potential for applications in intelligent robotics and human health monitoring.