Support vector machines within a bivariate mixed-integer linear programming framework

被引:2
|
作者
Warwicker, John Alasdair [1 ]
Rebennack, Steffen [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Operat Res IOR, D-76185 Karlsruhe, Baden-wurttembe, Germany
关键词
Support vector machine; Optimisation; Mixed-integer linear programming; Outlier detection; Feature selection; FEATURE-SELECTION;
D O I
10.1016/j.eswa.2023.122998
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support vector machines (SVMs) are a powerful machine learning paradigm, performing supervised learning for classification and regression analysis. A number of SVM models in the literature have made use of advances in mixed-integer linear programming (MILP) techniques in order to perform this task efficiently. In this work, we present three new models for SVMs that make use of piecewise linear (PWL) functions. This allows effective separation of data points where a simple linear SVM model may not be sufficient. The models we present make use of binary variables to assign data points to SVM segments, and hence fit within a recently presented framework for machine learning MILP models. Alongside presenting an inbuilt feature selection operator, we show that the models can benefit from robust inbuilt outlier detection. Experimental results show when each of the presented models is effective, and we present guidelines on which of the models are preferable in different scenarios.
引用
收藏
页数:17
相关论文
共 50 条