A strain rate-dependent interfacial contact model by considering the strain rate and temperature of lithium for LLZO-based solid-state lithium batteries

被引:2
|
作者
He, Shangyang [1 ]
Yang, Haodong [1 ]
Wang, Zhanjiang [1 ]
机构
[1] Southwest Jiaotong Univ, Dept Mech Engn, Chengdu 610031, Peoples R China
关键词
Lithium metal; Strain rate; Solid state electrolyte; Modified Zerilli-Armstrong model; Gray wolf optimizer; Interfacial contact; METAL; ION; ELECTROLYTE; DEFORMATION; PRESSURE; DYNAMICS; KINETICS;
D O I
10.1007/s10008-023-05634-3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The interfacial contact between the electrolyte and electrode is a crucial factor influencing the interface impedance in all-solid-state lithium batteries. This paper investigates the effects of temperature and strain rate of lithium metal on the interfacial contact and stress state of the Li-Li7La3Zr2O12 interface using the finite element method. To predict the plastic flow behavior of lithium metal, a modified Zerilli-Armstrong constitutive model is proposed over a wide temperature range (198 to 398 K) and strain rate range (4 x 10(-5) s(-1) to 2 x 10(-2) s(-1)). Based on the experimental data, the parameters in the constitutive model of lithium are determined based on gray wolf optimizer. After optimizing the parameters, the average absolute relative error is 6.22% and the correlation coefficient is 0.9882. Based on the finite element simulation, the effects of temperature and strain rate on the interface contact and stress state under different Li7La3Zr2O12 surface roughness are further analyzed. Results show that temperature and strain rate have significant effects on the interface contact and stress state. Specifically, the interfacial contact region increases with the decrease in the strain rate and with the increase in temperature.
引用
收藏
页码:3465 / 3476
页数:12
相关论文
共 50 条
  • [1] A strain rate-dependent interfacial contact model by considering the strain rate and temperature of lithium for LLZO-based solid-state lithium batteries
    Shangyang He
    Haodong Yang
    Zhanjiang Wang
    Journal of Solid State Electrochemistry, 2023, 27 : 3465 - 3476
  • [2] Optimization strategies for key interfaces of LLZO-based solid-state lithium metal batteries
    Chu, Jiangwei
    Li, Ziwei
    Wang, Jin
    Huang, Gang
    Zhang, Xinbo
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (09) : 2109 - 2134
  • [3] Succinonitrile-Lithium Salt Complexes as Solid Catholytes for LLZO-Based Solid-State Batteries
    Go, Wooseok
    Tucker, Michael C.
    Doeff, Marca M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (02)
  • [4] On the strain rate-dependent mechanical behavior of PE separator for lithium-ion batteries
    Li, Honggang
    Gu, Jiahui
    Pan, Yongjun
    Liu, Binghe
    Zhang, Chao
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2024, 194
  • [5] Interplay among Metallic Interlayers, Discharge Rate, and Pressure in LLZO-Based Lithium-Metal Batteries
    Thenuwara, Akila C.
    Thompson, Eric L.
    Malkowski, Thomas F.
    Parrotte, Kenneth D.
    Lostracco, Kathryn E.
    Narayan, Sooraj
    Rooney, Ryan T.
    Seeley, Lori A.
    Borges, Melroy R.
    Conway, Brent D.
    Song, Zhen
    Badding, Michael E.
    Gallagher, Kevin G.
    ACS ENERGY LETTERS, 2023, 8 (10) : 4016 - 4023
  • [6] Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries
    LePage, William S.
    Chen, Yuxin
    Kazyak, Eric
    Chen, Kuan-Hung
    Sanchez, Adrian J.
    Poli, Andrea
    Arruda, Ellen M.
    Thouless, M. D.
    Dasgupta, Neil P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (02) : A89 - A97
  • [7] High-Rate and Stable LLZO-Based Lithium-Metal Batteries Enabled via a Tin Interlayer
    Thenuwara, Akila C.
    Narayan, Sooraj
    Thompson, Eric L.
    Quesada, Mark A.
    Malkowski, Thomas F.
    Parrotte, Kenneth D.
    Lostracco, Kathryn E.
    Seeley, Lori A.
    Borges, Melroy R.
    Song, Zhen
    Rezikyan, Aram
    Labant, Marissa
    Wu, Xingzhong
    Badding, Michael E.
    Gallagher, Kevin G.
    ACS ENERGY LETTERS, 2024, 9 (05): : 2401 - 2409
  • [8] Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification
    Ohta, Narumi
    Takada, Kazunori
    Zhang, Lianqi
    Ma, Renzhi
    Osada, Minoru
    Sasaki, Takayoshi
    ADVANCED MATERIALS, 2006, 18 (17) : 2226 - +
  • [9] Rate-dependent deformation of amorphous sulfide glass electrolytes for solid-state batteries
    Athanasiou, Christos E.
    Liu, Xing
    Jin, Mok Yun
    Nimon, Eugene
    Visco, Steve
    Lee, Cholho
    Park, Myounggu
    Yun, Junnyeong
    Padture, Nitin P.
    Gao, Huajian
    Sheldon, Brian W.
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (04):
  • [10] Interfacial modification enabled room temperature solid-state lithium–metal batteries
    Bin Zhao
    Xurui Feng
    Mingpeng Yu
    Wenqi Wang
    Shuchang Hao
    Hao Chen
    Yu Huang
    Wei Gong
    Lihua Liu
    Hong Qiu
    Ionics, 2021, 27 : 1569 - 1578