Review of Machine Learning Advancements for Single-Cell Analysis

被引:0
|
作者
Nasir, Nida [1 ]
Alshabi, Mohammad [2 ]
Al-Yateem, Nabeel [3 ]
Rahman, Sued Azizur [4 ]
Subu, Muhammad Arsyad [3 ]
Hijazi, Heba Hesham [4 ]
Ahmed, Fatma Refaat [3 ]
Dias, Jacqueline Maria [3 ]
Al Marzouqi, Amina [4 ]
Alkhawaldeh, Mohammad Yousef [3 ]
Saifan, Ahmad Rajeh [5 ]
AbuRuz, Mohannad Eid [5 ]
机构
[1] Univ Sharjah, Res Inst Sci & Engn, Sharjah, U Arab Emirates
[2] Univ Sharjah, Coll Engn, Dept Mech & Nucl Engn, Sharjah, U Arab Emirates
[3] Univ Sharjah, Coll Hlth Sci, Dept Nursing, Sharjah, U Arab Emirates
[4] Univ Sharjah, Coll Hlth Sci, Dept Hlth Serv Adm, Sharjah, U Arab Emirates
[5] Appl Sci private Univ, Fac Nursing, Amman, Jordan
关键词
Cell type Classification; Single Cell Analysis (SCA); Deep Learning;
D O I
10.1109/COMPSAC57700.2023.00210
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Massive amounts of data describing the genomic, transcriptomic, and epigenomic features of many different cells are produced by single-cell omics approaches. Artificial intelli- gence (AI) models are widely used to infer biological informa- tion and construct predictive models from these data due to their adaptability, scalability, and remarkable success in other disciplines. Low-dimensional representations of single-cell omics data, batch normalization, cell type classification, trajectory inference, gene regulatory network inference, and multimodal data integration have all seen a recent surge in innovation thanks to machine and deep learning. We provide a survey of recent developments in machine learning (ML) algorithms intended for analysis of single-cell omics data to aid readers in navigating this rapidly-evolving literature.
引用
收藏
页码:1383 / 1387
页数:5
相关论文
共 50 条
  • [21] Combining Pathway Analysis and Supervised Machine Learning for the Functional Classification of Single-Cell Transcriptomic Data
    Koutsandreas, Thodoris
    Bajram, Ajdini
    Mastrokalou, Chara
    Pilalis, Eleftherios
    Chatziioannou, Aristotelis
    Maglogiannis, Ilias
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 861 - 866
  • [22] Identifying tumor cells at the single-cell level using machine learning
    Dohmen, Jan
    Baranovskii, Artem
    Ronen, Jonathan
    Uyar, Bora
    Franke, Vedran
    Akalin, Altuna
    GENOME BIOLOGY, 2022, 23 (01)
  • [23] Biases in machine-learning models of human single-cell data
    Willem, Theresa
    Shitov, Vladimir A.
    Luecken, Malte D.
    Kilbertus, Niki
    Bauer, Stefan
    Piraud, Marie
    Buyx, Alena
    Theis, Fabian J.
    NATURE CELL BIOLOGY, 2025, 27 (03) : 384 - 392
  • [24] Identifying tumor cells at the single-cell level using machine learning
    Jan Dohmen
    Artem Baranovskii
    Jonathan Ronen
    Bora Uyar
    Vedran Franke
    Altuna Akalin
    Genome Biology, 23
  • [25] Statistical and machine learning methods for immunoprofiling based on single-cell data
    Zhang, Jingxuan
    Li, Jia
    Lin, Lin
    HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2023, 19 (02)
  • [26] A global genetic interaction network by single-cell imaging and machine learning
    Heigwer, Florian
    Scheeder, Christian
    Bageritz, Josephine
    Yousefian, Schayan
    Rauscher, Benedikt
    Laufer, Christina
    Beneyto-Calabuig, Sergi
    Funk, Maja Christina
    Peters, Vera
    Boulougouri, Maria
    Bilanovic, Jana
    Miersch, Thilo
    Schmitt, Barbara
    Blass, Claudia
    Port, Fillip
    Boutros, Michael
    CELL SYSTEMS, 2023, 14 (05) : 346 - +
  • [27] Morphokinetic single-cell analysis and machine learning as a tool to characterize breast cancer cell motility and response to therapy
    Tsarfaty, Ilan
    Megides, Or
    Doron, Ohad
    Alaloof, Hagar
    Moskowitz, Ori
    Horev, Judith
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [28] Novel AT2 Cell Subpopulations and Diagnostic Biomarkers in IPF: Integrating Machine Learning with Single-Cell Analysis
    Yang, Zhuoying
    Yang, Yanru
    Han, Xin
    Hou, Jiwei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (14)
  • [29] Identification of cortical interneuron cell markers in mouse embryos based on machine learning analysis of single-cell transcriptomics
    Li, Zhandong
    Wang, Deling
    Guo, Wei
    Zhang, Shiqi
    Chen, Lei
    Zhang, Yu-Hang
    Lu, Lin
    Pan, XiaoYong
    Huang, Tao
    Cai, Yu-Dong
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [30] Advancements in Cholelithiasis Diagnosis: A Systematic Review of Machine Learning Applications in Imaging Analysis
    Ahmed, Almegdad S.
    Ahmed, Sharwany S.
    Mohamed, Shakir
    Salman, Noureia E.
    Humidan, Abubakr Ali M.
    Ibrahim, Rami F.
    Salim, Rammah S.
    Elamir, Ahmed A. Mohamed
    Hakim, Elmahdi M.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (08)