CoNet: Efficient Network Regression for Survival Analysis in Transcriptome-Wide Association Studies-With Applications to Studies of Breast Cancer

被引:0
|
作者
Han, Jiayi [1 ,2 ]
Zhang, Liye [1 ,2 ]
Yan, Ran [1 ,2 ]
Ju, Tao [1 ,2 ]
Jin, Xiuyuan [1 ,2 ]
Wang, Shukang [1 ,2 ]
Yuan, Zhongshang [1 ,2 ]
Ji, Jiadong [3 ]
机构
[1] Shandong Univ, Cheeloo Coll Med, Sch Publ Hlth, Dept Biostat, Jinan 250012, Peoples R China
[2] Shandong Univ, Inst Med Dataol, Jinan 250003, Peoples R China
[3] Shandong Univ, Inst Financial Studies, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
TWAS; biological network; breast cancer; survival analysis; POWER;
D O I
10.3390/genes14030586
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transcriptome-wide association studies (TWASs) aim to detect associations between genetically predicted gene expression and complex diseases or traits through integrating genome-wide association studies (GWASs) and expression quantitative trait loci (eQTL) mapping studies. Most current TWAS methods analyze one gene at a time, ignoring the correlations between multiple genes. Few of the existing TWAS methods focus on survival outcomes. Here, we propose a novel method, namely a COx proportional hazards model for NEtwork regression in TWAS (CoNet), that is applicable for identifying the association between one given network and the survival time. CoNet considers the general relationship among the predicted gene expression as edges of the network and quantifies it through pointwise mutual information (PMI), which is under a two-stage TWAS. Extensive simulation studies illustrate that CoNet can not only achieve type I error calibration control in testing both the node effect and edge effect, but it can also gain more power compared with currently available methods. In addition, it demonstrates superior performance in real data application, namely utilizing the breast cancer survival data of UK Biobank. CoNet effectively accounts for network structure and can simultaneously identify the potential effecting nodes and edges that are related to survival outcomes in TWAS.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Improving Gene Expression Prediction Accuracy in Transcriptome-Wide Association Studies
    Fryett, James J.
    Morris, Andrew P.
    Cordell, Heather J.
    HUMAN HEREDITY, 2017, 83 (01) : 8 - 8
  • [32] Harmony in transcripts: a systematic literature review of transcriptome-wide association studies
    Mashhour, Mahinaz A.
    Kandil, Ahmed Hisham
    AbdElwahed, Manal
    Mabrouk, Mai S.
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [33] Disentangling genetic feature selection and aggregation in transcriptome-wide association studies
    Cao, Chen
    Kossinna, Pathum
    Kwok, Devin
    Li, Qing
    He, Jingni
    Su, Liya
    Guo, Xingyi
    Zhang, Qingrun
    Long, Quan
    GENETICS, 2022, 220 (02)
  • [34] Disentangling Genetic Feature Selection and Aggregation in Transcriptome-Wide Association Studies
    Cao, Chen
    Kwok, Devin
    Li, Qing
    He, Jingni
    Guo, Xingyi
    Zhang, Qingrun
    Long, Quan
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 771 - 772
  • [35] Multi-omic strategies for transcriptome-wide prediction and association studies
    Bhattacharya, Arjun
    Santos, Hudson J.
    Love, Michael I.
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 470 - 471
  • [36] A powerful fine-mapping method for transcriptome-wide association studies
    Chong Wu
    Wei Pan
    Human Genetics, 2020, 139 : 199 - 213
  • [37] TRANSCRIPTOME-WIDE NETWORK ANALYSIS PREDICTS THE ROLE OF LACTATE DEHYDROGENASE C IN BREAST CANCER CELL SURVIVAL AND IMMUNE DYSFUNCTION
    Naik, A.
    Decock, J.
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 : A20 - A21
  • [38] Integrative approaches for large-scale transcriptome-wide association studies
    Alexander Gusev
    Arthur Ko
    Huwenbo Shi
    Gaurav Bhatia
    Wonil Chung
    Brenda W J H Penninx
    Rick Jansen
    Eco J C de Geus
    Dorret I Boomsma
    Fred A Wright
    Patrick F Sullivan
    Elina Nikkola
    Marcus Alvarez
    Mete Civelek
    Aldons J Lusis
    Terho Lehtimäki
    Emma Raitoharju
    Mika Kähönen
    Ilkka Seppälä
    Olli T Raitakari
    Johanna Kuusisto
    Markku Laakso
    Alkes L Price
    Päivi Pajukanta
    Bogdan Pasaniuc
    Nature Genetics, 2016, 48 : 245 - 252
  • [39] Integrative approaches for large-scale transcriptome-wide association studies
    Gusev, Alexander
    Ko, Arthur
    Shi, Huwenbo
    Bhatia, Gaurav
    Chung, Wonil
    Penninx, Brenda W. J. H.
    Jansen, Rick
    de Geus, Eco J. C.
    Boomsma, Dorret I.
    Wright, Fred A.
    Sullivan, Patrick F.
    Nikkola, Elina
    Alvarez, Marcus
    Civelek, Mete
    Lusis, Aldons J.
    Lehtimaki, Terho
    Raitoharju, Emma
    Kahonen, Mika
    Seppala, Ilkka
    Raitakari, Olli T.
    Kuusisto, Johanna
    Laakso, Markku
    Price, Alkes L.
    Pajukanta, Paivi
    Pasaniuc, Bogdan
    NATURE GENETICS, 2016, 48 (03) : 245 - 252
  • [40] A powerful fine-mapping method for transcriptome-wide association studies
    Wu, Chong
    Pan, Wei
    HUMAN GENETICS, 2020, 139 (02) : 199 - 213