Global solutions to the 3D compressible Navier-Stokes equations with a class of special initial data

被引:0
|
作者
Yu, Yanghai [1 ]
Wang, Hui [1 ]
Li, Jinlu [2 ]
Yang, Xiaolei [3 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Anhui, Peoples R China
[2] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
基金
中国国家自然科学基金;
关键词
MULTIDIMENSIONAL FLOWS; WELL-POSEDNESS; EXISTENCE; SYSTEM;
D O I
10.1063/5.0086787
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the Cauchy problem of tri-dimensional compressible Navier-Stokes equations and construct global smooth solutions by choosing a class of new special initial velocity and density whose B?(-s)(2,infinity)- norm can be arbitrarily large and improve the previous result in Li et al. [J. Math. Fluid Mech. 24, 22 (2022)]. Our main idea is splitting the linearized equations from the compressible Navier-Stokes equations and exploring the damping effect of the linearized system.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Global wellposedness of the 3D compressible Navier-Stokes equations with free surface in the maximal regularity class
    Shibata, Yoshihiro
    Zhang, Xin
    NONLINEARITY, 2023, 36 (07) : 3710 - 3733
  • [32] The 3D Navier-Stokes Equations: Invariants, Local and Global Solutions
    Semenov, Vladimir, I
    AXIOMS, 2019, 8 (02)
  • [33] GLOBAL STABILITY OF LARGE SOLUTIONS TO THE 3D NAVIER-STOKES EQUATIONS
    PONCE, G
    RACKE, R
    SIDERIS, TC
    TITI, ES
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (02) : 329 - 341
  • [34] Global Stability of Large Solutions to the 3D Compressible Navier–Stokes Equations
    Lingbing He
    Jingchi Huang
    Chao Wang
    Archive for Rational Mechanics and Analysis, 2019, 234 : 1167 - 1222
  • [35] Global Regularity to the Navier-Stokes Equations for a Class of Large Initial Data
    Han, Bin
    Chen, Yukang
    MATHEMATICAL MODELLING AND ANALYSIS, 2018, 23 (02) : 262 - 286
  • [36] Global symmetric classical solutions of the full compressible Navier-Stokes equations with vacuum and large initial data
    Wen, Huanyao
    Zhu, Changjiang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (03): : 498 - 545
  • [37] The global solutions of axisymmetric Navier-Stokes equations with anisotropic initial data
    Chen, Hui
    Fang, Daoyuan
    Zhang, Ting
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [38] GLOBAL STABILITY AND NONVANISHING VACUUM STATES OF 3D COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Wu, Guochun
    Yao, Lei
    Zhang, Yinghui
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (02) : 882 - 899
  • [39] Global Wellposedness for a Certain Class of Large Initial Data for the 3D Navier–Stokes Equations
    Percy Wong
    Annales Henri Poincaré, 2014, 15 : 633 - 643
  • [40] The optimal decay rates of classical solutions to the 3D compressible Navier-Stokes equations
    Xu, Fuyi
    Chi, Meiling
    Jiang, Jiqiang
    Cui, Yujun
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (10):