Genetic parameters and selection gain in tropical wheat populations via Bayesian inference

被引:0
|
作者
Mezzmo, Henrique Caletti [1 ]
Casagrande, Cleiton Renato [1 ]
Azevedo, Camila Ferreira [2 ]
Borem, Aluizio [1 ]
Barros, Willian Silva [3 ]
Nardino, Maicon [1 ]
机构
[1] Univ Fed Vicosa UFV, Dept Agron, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Vicosa UFV, Dept Estat, Vicosa, MG, Brazil
[3] Univ Fed Pelotas UFPEL, Dept Estat & Matemat, Pelotas, RS, Brazil
来源
CIENCIA RURAL | 2023年 / 53卷 / 07期
关键词
deviance information criterion; early selection; Triticum aestivum L; wheat breeding; TRAITS;
D O I
10.1590/0103-8478cr202200431
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The development process of a new wheat cultivar requires time between obtaining the base population and selecting the most promising line. Estimating genetic parameters more accurately in early generations with a view to anticipating selection means important advances for wheat breeding programs. Thus, the present study estimated the genetic parameters of F-2 populations of tropical wheat and the genetic gain from selection via the Bayesian approach. To this end, the authors assessed the grain yield per plot of 34 F-2 populations of tropical wheat. The Bayesian approach provided an adequate fit to the model, estimating genetic parameters within the parametric space. Heritability (h(2)) was 0.51. Among those selected, 11 F-2 populations performed better than the control cultivars, with genetic gain of 7.80%. The following populations were the most promising: Tbio Sossego/CD 1303, CD 1303/Tbio Ponteiro, BRS 254/CD 1303, Tbio Duque/Tbio Aton, and Tbio Aton/CD 1303. Bayesian inference can be used to significantly improve tropical wheat breeding programs.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Estimation of kinetic parameters in a chromatographic separation model via Bayesian inference
    Oliveira, C.
    Lugon Junior, J.
    Knupp, D. C.
    Silva Neto, A. J.
    Prieto-Moreno, A.
    Llanes-Santiago, O.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2018, 34 (01):
  • [32] Bayesian Inference for the Parameters of Kumaraswamy Distribution via Ranked Set Sampling
    Jiang, Huanmin
    Gui, Wenhao
    SYMMETRY-BASEL, 2021, 13 (07):
  • [33] Bayesian inference for stochastic multitype epidemics in structured populations via random graphs
    Demiris, N
    O'Neill, PD
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 : 731 - 745
  • [34] GENETIC PARAMETERS AND PREDICTIVE GENETIC GAIN IN MAIZE WITH MODIFIED RECURRENT SELECTION METHOD
    Dona, Anderson Afonso
    Miranda, Glauco Vieira
    DeLima, Rodrigo Oliveira
    Chaves, Luciana Goncalves
    Gomes e Gama, Elto Eugenio
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2012, 72 (01): : 33 - 39
  • [35] Heterogeneity of variance and genetic parameters for milk production in cattle, using Bayesian inference
    Junior, Raimundo Nonato Colares Camargo
    Fernandes, Luane da Silva
    Panetto, Joao Claudio do Carmo
    da Silva, Marcos Vinicius Gualberto Barbosa
    de Araujo, Claudio Vieira
    Silva, Andre Guimaraes Maciel e
    Marques, Jose Ribamar Felipe
    Silva, Welligton Conceicao da
    de Araujo, Simone Inoe
    de Castro, Samia Rubielle Silva
    Silva, Lilian Katia Ximenes
    Castro, Simone Vieira
    Junior, Jose de Brito Lourenco
    PLOS ONE, 2023, 18 (07):
  • [36] Bayesian Inference of Genetic Parameters Based on Conditional Decompositions of Multivariate Normal Distributions
    Hallander, Jon
    Waldmann, Patrik
    Wang, Chunkao
    Sillanpaa, Mikko J.
    GENETICS, 2010, 185 (02) : 645 - 654
  • [37] Bayesian Inference of Genetic Parameters for Reproductive and Performance Traits in White Leghorn Hens
    Rosa, Jaqueline O.
    Venturini, Guilherme Costa
    Seleguim Chud, Tatiane Cristina
    Pires, Bruno Carlos
    Buzanskas, Marcos Eli
    Stafuzza, Nedenia Bonvino
    Furquim, Gabriel Rezende
    Rocha da Cruz, Valdecy Aparecida
    Schmidt, Gilberto Silber
    Pereira de Figueiredo, Elsio Antonio
    Martins Hossepian de Lima, Vera Fernanda
    Ledur, Monica Correa
    Munari, Danisio Prado
    CZECH JOURNAL OF ANIMAL SCIENCE, 2018, 63 (06) : 230 - 236
  • [38] The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design
    Oladyshkin, Sergey
    Nowak, Wolfgang
    ENTROPY, 2019, 21 (11)
  • [39] Genetic parameters and multiple-trait selection in wheat genotypes
    Meier, Carine
    Marchioro, Volmir Sergio
    Meira, Daniela
    Olivoto, Tiago
    Klein, Luis Antonio
    PESQUISA AGROPECUARIA TROPICAL, 2021, 51
  • [40] Bayesian inference in genetic analysis of diploid populations:: inbreeding coefficient and outcrossing rate estimation
    dos Reis, Ricardo Luis
    Muniz, Joel Augusto
    Fonseca e Silva, Fabyano
    Safadi, Thelma
    de Aquino, Luiz Henrique
    CIENCIA RURAL, 2008, 38 (05): : 1258 - 1265