Mononuclear nickel(II) and dinuclear palladium(II) complexes of a redox-active iminophenolate-based O,O,N,N,S,S ligand - experimental and theoretical vision

被引:0
|
作者
Ahmad, Seraj [1 ]
Kumar, Manoj [1 ]
Javed, Saleem [1 ]
Singh, Jadveer [1 ]
Arora, Himanshu [1 ]
Ali, Akram [1 ]
机构
[1] RESEARCH IN NURSING & HEALTH
来源
JOURNAL OF MOLECULAR STRUCTURE | 1600年 / 0卷 / 01期
关键词
Schiff base ligand; Nickel; Palladium; Crystal structures; Cyclic voltammetry; TD-DFT; TRANSITION-METAL-COMPLEXES; O-IMINOBENZOSEMIQUINONATO COMPLEXES; PHENOXYL RADICAL COMPLEXES; DONOR-ACCEPTOR SYSTEMS; LOW-SPIN IRON(III); BIS-AMIDE LIGAND; ELECTRONIC-STRUCTURE; GALACTOSE-OXIDASE; COBALT(III) COMPLEXES; HEXADENTATE LIGANDS;
D O I
RES NURS HEALTH
中图分类号
学科分类号
摘要
A new potentially hexadentate redox-active schiff base ligand, H2L = 2-((Z)-(2-(2-(2-((Z)-3,5-di-tert-butyl-2hydroxybenzylideneamino)phenylthio)ethylthio)phenylimino)methyl)-4,6-di-tert-butylphenol, reacts with Ni-II(O2CCH3)(2)center dot 4H(2)O and PdCl2 in CH3OH in the presence of air and Et3N affording isolation of yellow and red crystalline solids of composition [Ni(L)] (1) and [Pd-2(L)Cl-2].2CH2Cl2 (2), respectively. When examined by cyclic voltammetry (CV), 1 exhibits three quasireversible responses at E-1/2 = 0.60 V (peak-to peak separation,Delta E-p = 80 mV), 0.96 V (Delta E-p = 80 mV) and 1.16 V (Delta E-p = 160 mV) vs SCE (saturated calomel electrode); while 2 exhibits one quasireversible response at E-1/2 = 1.185 V (peak-to peak separation,Delta E-p = 130 mV). One electron oxidized species showed EPR spectrum correspond to ferromagnetically coupled system, S = 3/2 (S = 1 for NiII and S = 1/2 for phenoxyl radical). Structural analysis revealed that 1 is discrete mononuclear and 2 is discrete dinuclear coordination complex. In complex 1, each Ni-II is in distorted octahedral NiN2O2S2 environment where coordination is satisfied by two nitrogen atoms, two oxygen atoms and two sulfur atoms of the ligand. In complex 2, each Pd is in distorted square planner PdNOSCl environment where coordination is satisfied by one each nitrogen, oxygen and sulfur atoms of the ligand, and a chloride ion. DFT calculations at B3LYP-level of theory adequately describe the electronic structures of 1 and 2, containing a spin-unpaired d(8)Ni(II) ion and spin-paired d(8)Pd(II) ion. Time-dependent-DFT calculations on 1 and 2 shed light on the origin of UV vis NIR spectral absorptions. [Ahmad, Seraj; Kumar, Manoj; Ali, Akram] Univ Allahabad, CMP Coll, Dept Chem, Prayagraj 211002, India; [Javed, Saleem] Jamia Millia Islamia, Dept Chem, New Delhi 110025, Delhi, India; [Singh, Jadveer] Mahamaya Govt Degree Coll, Dept Chem, Dhanupur 221503, India; [Arora, Himanshu] Univ Allahabad, Fac Sci, Dept Chem, Prayagraj 211002, India University of Allahabad; Chaudhary Mahadeo Prasad Degree College; Jamia Millia Islamia; University of Allahabad Ali, A (corresponding author), Univ Allahabad, CMP Coll, Dept Chem, Prayagraj 211002, India.; Arora, H (corresponding author), Univ Allahabad, Fac Sci, Dept Chem, Prayagraj 211002, India. himanshuiitk2004@gmail.com; aliakram96@gmail.com Javed, Saleem/AAC-3394-2021 Javed, Saleem/0000-0003-4623-100X University Grant Com-mission, Government of India (UGC-BSR) [30-461/2019 (BSR)] University Grant Com-mission, Government of India (UGC-BSR) Authors thank Prof. R.N. Mukherjee for using the lab facilities at IIT Kanpur. Authors also thank Dr. Arunava Sengupta for helping in DFT work analysis. This work is supported by the University Grant Com-mission, Government of India (UGC-BSR research start-up grant No. 30-461/2019 (BSR) ) . Agarwal P, 2021, NEW J CHEM, V45, P1203, DOI 10.1039/d0nj00484g; Ali A, 2021, J CHEM SCI, V133, DOI 10.1007/s12039-021-01961-y; Ali A, 2015, J INDIAN CHEM SOC, V92, P1981; Ali A, 2015, INORG CHEM, V54, P5182, DOI 10.1021/ic503103e; Arora H, 2010, DALTON T, V39, P10088, DOI 10.1039/c0dt00342e; Bachler V, 2002, INORG CHEM, V41, P4179, DOI 10.1021/ic0113101; Barone V, 1998, J PHYS CHEM A, V102, P1995, DOI 10.1021/jp9716997; Basoglu A, 2009, POLYHEDRON, V28, P1115, DOI 10.1016/j.poly.2009.01.035; BECKE AD, 1993, J CHEM PHYS, V98, P5648, DOI 10.1063/1.464913; Bill E, 2005, CHEM-EUR J, V11, P204, DOI 10.1002/chem.200400850; Bittner MM, 2013, CHEM-EUR J, V19, P9686, DOI 10.1002/chem.201300520; Bittner MM, 2012, J AM CHEM SOC, V134, P5460, DOI 10.1021/ja212163t; Broere DLJ, 2015, ANGEW CHEM INT EDIT, V54, P1516, DOI 10.1002/anie.201410048; Broere DLJ, 2014, J AM CHEM SOC, V136, P11574, DOI 10.1021/ja502164f; Brown SN, 2012, INORG CHEM, V51, P1251, DOI 10.1021/ic202764j; Butin KP, 2005, USP KHIM+, V74, P585; CHAKRABORTY P, 1995, INORG CHIM ACTA, V229, P477, DOI 10.1016/0020-1693(94)04273-X; CHATTOPADHYAY P, 1995, INDIAN J CHEM A, V34, P76; Chaudhuri P, 2005, BIOL CHEM, V386, P1023, DOI 10.1515/BC.2005.118; Chaudhuri P, 2001, J AM CHEM SOC, V123, P2213, DOI 10.1021/ja003831d; chemcraftprog, About us; Chirik PJ, 2011, INORG CHEM, V50, P9737, DOI 10.1021/ic201881k; Chirik PJ, 2010, SCIENCE, V327, P794, DOI 10.1126/science.1183281; Chun H, 2001, INORG CHEM, V40, P4157, DOI 10.1021/ic010106a; Chun HP, 2002, INORG CHEM, V41, P790, DOI 10.1021/ic010860w; Comba P, 1998, INORG CHEM, V37, P4389, DOI 10.1021/ic980216q; Cossi M, 2003, J COMPUT CHEM, V24, P669, DOI 10.1002/jcc.10189; Cossi M, 2001, J CHEM PHYS, V115, P4708, DOI 10.1063/1.1394921; Das D, 2013, CHEM-EUR J, V19, P7384, DOI 10.1002/chem.201204620; Das D, 2012, DALTON T, V41, P11675, DOI 10.1039/c2dt30903c; Das D, 2011, DALTON T, V40, P8377, DOI 10.1039/c1dt10609k; Dehghani-Firouzabadi AA, 2015, J COORD CHEM, V68, P4345, DOI 10.1080/00958972.2015.1091925; Deibel N, 2014, INORG CHEM, V53, P1021, DOI 10.1021/ic4024713; Deibel N, 2012, CHEM COMMUN, V48, P2388, DOI 10.1039/c2cc15245b; DEY K, 1992, SYN REACT INORG MET, V22, P1111, DOI 10.1080/15533179208020256; Dolomanov OV, 2009, J APPL CRYSTALLOGR, V42, P339, DOI 10.1107/S0021889808042726; Eckshtain-Levi M, 2018, INORG CHIM ACTA, V481, P143, DOI 10.1016/j.ica.2017.09.049; EVANS DF, 1959, J CHEM SOC, P2003, DOI 10.1039/jr9590002003; Frisch MJ, 2009, Gaussian 16; Gamez P, 2004, DALTON T, P4079, DOI 10.1039/b413535k; Ghorai S, 2014, DALTON T, V43, P394, DOI 10.1039/c3dt52072b; GINSBERG AP, 1980, J AM CHEM SOC, V102, P111, DOI 10.1021/ja00521a020; Herebian D, 2002, EUR J INORG CHEM, P1957; Itoh S, 2000, COORDIN CHEM REV, V198, P3, DOI 10.1016/S0010-8545(99)00209-X; Jazdzewski BA, 2000, COORDIN CHEM REV, V200, P633, DOI 10.1016/S0010-8545(00)00342-8; Kaim W, 2011, INORG CHEM, V50, P9752, DOI 10.1021/ic2003832; Kaim W, 2010, COORDIN CHEM REV, V254, P1580, DOI 10.1016/j.ccr.2010.01.009; Kandaz M, 2002, POLYHEDRON, V21, P825, DOI 10.1016/S0277-5387(02)00860-4; Kanso H, 2020, INORG CHEM, V59, P5133, DOI 10.1021/acs.inorgchem.0c00381; Kochem A, 2012, INORG CHEM, V51, P10557, DOI 10.1021/ic300763t; Kokatam SL, 2007, DALTON T, P373, DOI 10.1039/b614745c; Kopec JA, 2012, INORG CHEM, V51, P1239, DOI 10.1021/ic201736h; Kumar A, 2019, POLYHEDRON, V172, P226, DOI 10.1016/j.poly.2019.06.032; LEE CT, 1988, PHYS REV B, V37, P785, DOI 10.1103/PhysRevB.37.785; Limberg C, 2003, ANGEW CHEM INT EDIT, V42, P5932, DOI 10.1002/anie.200300578; Luca OR, 2013, CHEM SOC REV, V42, P1440, DOI 10.1039/c2cs35228a; Lyons CT, 2013, COORDIN CHEM REV, V257, P528, DOI 10.1016/j.ccr.2012.06.003; MACKENZIE NE, 1980, J CHEM SOC PERK T 1, P2923, DOI 10.1039/p19800002923; Mathias JL, 2013, DALTON T, V42, P2358, DOI 10.1039/c2dt32585c; Meghdadi S, 2012, POLYHEDRON, V41, P115, DOI 10.1016/j.poly.2012.04.032; Min KS, 2004, INORG CHEM, V43, P2922, DOI 10.1021/ic0302480; Min KS, 2003, DALTON T, P1126, DOI 10.1039/b211698g; MOTODA KI, 1995, J CHEM SOC DALTON, P3419, DOI 10.1039/dt9950003419; Mukherjee S, 2005, INORG CHEM, V44, P7099, DOI 10.1021/ic050885l; NOODLEMAN L, 1979, J CHEM PHYS, V70, P4903, DOI 10.1063/1.437369; NOODLEMAN L, 1981, J CHEM PHYS, V74, P5737, DOI 10.1063/1.440939; NUR HP, 1981, INORG NUCL CHEM LETT, V17, P133, DOI 10.1016/0020-1650(81)80059-1; O'Boyle NM, 2008, J COMPUT CHEM, V29, P839, DOI 10.1002/jcc.20823; Pal S, 1998, POLYHEDRON, V17, P3439, DOI 10.1016/S0277-5387(98)00127-2; Paretzki A, 2014, CHEM-EUR J, V20, P5414, DOI 10.1002/chem.201304316; Patra AK, 1999, INORG CHEM, V38, P1388, DOI 10.1021/ic980672e; Pierre JL, 2000, CHEM SOC REV, V29, P251, DOI 10.1039/a909719h; Piskunov AV, 2008, CHEM-EUR J, V14, P10085, DOI 10.1002/chem.200801203; Poddel'sky AI, 2009, COORDIN CHEM REV, V253, P291, DOI 10.1016/j.ccr.2008.02.004; Praneeth VKK, 2012, ANGEW CHEM INT EDIT, V51, P10228, DOI 10.1002/anie.201204100; Rajput A, 2018, NEW J CHEM, V42, P12621, DOI 10.1039/c8nj02591f; Rajput A, 2014, INORG CHEM, V53, P36, DOI 10.1021/ic401985d; Rajsekhar G, 2004, NEW J CHEM, V28, P75, DOI 10.1039/b305313j; Rakshit R, 2014, INORG CHEM, V53, P3333, DOI 10.1021/ic402612v; Ray K, 2007, DALTON T, P1552, DOI 10.1039/b700096k; Ray M, 1997, INORG CHEM, V36, P3568, DOI 10.1021/ic961118c; Richa, 2022, J MOL STRUCT, V1269, DOI 10.1016/j.molstruc.2022.133805; ROTHIN AS, 1989, POLYHEDRON, V8, P491, DOI 10.1016/S0277-5387(00)80747-0; Roy AS, 2011, INORG CHEM, V50, P2488, DOI 10.1021/ic102296p; Sanz CA, 2014, CHEM COMMUN, V50, P11676, DOI 10.1039/c4cc04863f; Shekar S, 2014, DALTON T, V43, P3601, DOI 10.1039/c3dt53496k; Sheldrick GM, 2015, ACTA CRYSTALLOGR C, V71, P3, DOI [10.1107/S2053229614024218, 10.1107/S0108767307043930]; STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623, DOI 10.1021/j100096a001; Stubbe J, 2003, CHEM COMMUN, P2511, DOI 10.1039/b307617m; Stubbe J, 1998, CHEM REV, V98, P705, DOI 10.1021/cr9400875; Sun XR, 2002, INORG CHEM, V41, P4295, DOI 10.1021/ic011297k; Thomas F, 2007, EUR J INORG CHEM, P2379, DOI 10.1002/ejic.200601091; Thomas F, 2010, INORG CHIM ACTA, V363, P3122, DOI 10.1016/j.ica.2010.04.044; THURSTON EFW, 1990, J PHOTOGR SCI, V38, P34; Whittaker JW, 2003, CHEM REV, V103, P2347, DOI 10.1021/cr020425z; Ye SF, 2005, ANGEW CHEM INT EDIT, V44, P2103, DOI 10.1002/anie.200462339; Yilmaz I, 2008, POLYHEDRON, V27, P125, DOI 10.1016/j.poly.2007.08.044; Zats GM, 2012, DALTON T, V41, P47, DOI 10.1039/c1dt11868d; Zats GM, 2011, DALTON T, V40, P10889, DOI 10.1039/c1dt10615e; Zhang WX, 2001, TRANSIT METAL CHEM, V26, P380, DOI 10.1023/A:1011094325301; Zoubi WAL, 2011, SPECTROCHIM ACTA A, V79, P1909, DOI 10.1016/j.saa.2011.05.087 101 1 1 5 7 ELSEVIER AMSTERDAM RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS 0022-2860 1872-8014 J MOL STRUCT J. Mol. Struct. DEC 5 2023 1293 136181 10.1016/j.molstruc.2023.136181 http://dx.doi.org/10.1016/j.molstruc.2023.136181 JUL 2023 13 Chemistry, Physical Science Citation Index Expanded (SCI-EXPANDED) Chemistry P3QH1 2024-05-07 WOS:001049817100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Al-Ghussain, L; Ahmad, AD; Abubaker, AM; Hovi, K; Hassan, MA; Annuk, A Al-Ghussain, Loiy; Ahmad, Adnan Darwish; Abubaker, Ahmad M.; Hovi, Kuelli; Hassan, Muhammed A.; Annuk, Andres Techno-economic feasibility of hybrid PV/wind/battery/thermal storage trigeneration system: Toward 100% energy independency and green hydrogen production (vol 9, pg 752, 2023 ) ENERGY REPORTS English Correction [Al-Ghussain, Loiy] Univ Kentucky, Mech Engn Dept, Lexington, KY 40506 USA; [Al-Ghussain, Loiy] Natl Renewable Energy Lab, Energy Convers & Storage Syst Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA; [Ahmad, Adnan Darwish] Univ Kentucky, Inst Res Technol Dev IR4TD, Lexington, KY 40506 USA; [Abubaker, Ahmad M.] Villanova Univ, Mech Engn Dept, Villanova, PA USA; [Hovi, Kuelli; Annuk, Andres] Estonian Univ Life Sci, Inst Forestry & Engn, EE-51006 Tartu, Estonia; [Hassan, Muhammed A.] Cairo Univ, Fac Engn, Mech Power Engn Dept, Giza 12613, Egypt; [Hassan, Muhammed A.] Univ Pau & Pays Adour, E2S UPPA, LaTEP, Pau, France University of Kentucky; United States Department of Energy (DOE); National Renewable Energy Laboratory - USA; University of Kentucky; Villanova University; Estonian University of Life Sciences; Egyptian Knowledge Bank (EKB); Cairo University; Universite de Pau et des Pays de l'Adour Al-Ghussain, L (corresponding author), Univ Kentucky, Mech Engn Dept, Lexington, KY 40506 USA. Loiy.Al-Ghussain@uky.edu Hassan, Muhammed A/N-8394-2017; abubaker, ahmad m/C-7954-2015; Ahmad, Adnan Darwish/AAM-4015-2020; Al-Ghussain, loiy/I-2437-2019 Hassan, Muhammed A/0000-0002-0825-5644; abubaker, ahmad m/0000-0003-1753-0262; Ahmad, Adnan Darwish/0000-0002-3792-2135; Al-Ghussain, loiy/0000-0002-3457-3806 Al-Ghussain L, 2023, ENERGY REP, V9, P752, DOI 10.1016/j.egyr.2022.12.034 1 0 0 8 13 ELSEVIER AMSTERDAM RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS 2352-4847 ENERGY REP Energy Rep. NOV 2023 10 894 894 10.1016/j.egyr.2023.07.034 http://dx.doi.org/10.1016/j.egyr.2023.07.034 JUL 2023 1 Energy & Fuels Science Citation Index Expanded (SCI-EXPANDED) Energy & Fuels P7HB6 gold 2024-05-07 WOS:001052337100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Alper, P; Betschart, C; Andre, C; Boulay, T; Cheng, D; Deane, J; Faller, M; Feifel, R; Glatthar, R; Han, D; Hemmig, R; Jiang, T; Knoepfel, T; Maginnis, J; Mutnick, D; Pei, W; Ruzzante, G; Syka, P; Zhang, GB; Zhang, Y; Zink, F; Zipfel, G; Hawtin, S; Junt, T; Michellys, PY Alper, Phil; Betschart, Claudia; Andre, Ceïdric; Boulay, Thomas; Cheng, Dai; Deane, Jonathan; Faller, Michael; Feifel, Roland; Glatthar, Ralf; Han, Dong; Hemmig, Rene; Jiang, Tao; Knoepfel, Thomas; Maginnis, Jillian; Mutnick, Daniel; Pei, Wei; Ruzzante, Giulia; Syka, Peter; Zhang, Guobao; Zhang, Yi; Zink, Florence; Zipfel, Geraldine; Hawtin, Stuart; Junt, Tobias; Michellys, Pierre-Yves Discovery of the TLR7/8 Antagonist MHV370 for Treatment of Systemic Autoimmune Diseases ACS MEDICINAL CHEMISTRY LETTERS English Article Toll-like receptor 7; toll-like receptor 8; lupus; innate immunity; SAR TOLL-LIKE RECEPTORS; RECOGNITION Toll-like receptor (TLR) 7 and TLR8 are endosomal sensorsof theinnate immune system that are activated by GU-rich single strandedRNA (ssRNA). Multiple genetic and functional lines of evidence linkchronic activation of TLR7/8 to the pathogenesis of systemic autoimmunediseases (sAID) such as Sjo''gren's syndrome (SjS) andsystemic lupus erythematosus (SLE). This makes targeting TLR7/8-inducedinflammation with small-molecule inhibitors an attractive approachfor the treatment of patients suffering from systemic autoimmune diseases.Here, we describe how structure-based optimization of compound 2 resulted in the discovery of 34 (MHV370, (S)-N-(4-((5-(1,6-dimethyl-1H-pyrazolo[3,4-b]pyridin-4-yl)-3-methyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridin-1-yl)methyl)bicyclo[2.2.2]octan-1-yl)morpholine-3-carboxamide).Its in vivo activity allows for further profilingtoward clinical trials in patients with autoimmune disorders, anda Phase 2 proof of concept study of MHV370 has been initiated, testingits safety and efficacy in patients with Sjo''gren's syndromeand mixed connective tissue disease. [Betschart, Claudia; Andre, Ceïdric; Boulay, Thomas; Faller, Michael; Feifel, Roland; Glatthar, Ralf; Hemmig, Rene; Knoepfel, Thomas; Ruzzante, Giulia; Zink, Florence; Zipfel, Geraldine; Hawtin, Stuart; Junt, Tobias] Novartis Inst Biomed Res, CH-4056 Basel, Switzerland; [Alper, Phil; Cheng, Dai; Deane, Jonathan; Han, Dong; Jiang, Tao; Maginnis, Jillian; Mutnick, Daniel; Pei, Wei; Syka, Peter; Zhang, Guobao; Zhang, Yi; Michellys, Pierre-Yves] Novartis Inst Biomed Res, San Diego, CA 92121 USA Novartis; Novartis Alper, P (corresponding author), Novartis Inst Biomed Res, San Diego, CA 92121 USA. phillip.alper@novartis.com Knoepfel, Thomas/0000-0002-1675-6297 Alper PB, 2020, BIOORG MED CHEM LETT, V30, DOI 10.1016/j.bmcl.2020.127366; Avalos AM, 2010, AUTOIMMUNITY, V43, P76, DOI 10.3109/08916930903374618; Banchereau R, 2016, CELL, V165, P551, DOI 10.1016/j.cell.2016.03.008; Barrat FJ, 2005, J EXP MED, V202, P1131, DOI 10.1084/jem.20050914; Brown GJ, 2022, NATURE, V605, P349, DOI 10.1038/s41586-022-04642-z; Deane JA, 2007, IMMUNITY, V27, P801, DOI 10.1016/j.immuni.2007.09.009; Forsbach A, 2008, J IMMUNOL, V180, P3729, DOI 10.4049/jimmunol.180.6.3729; Ganguly D, 2009, J EXP MED, V206, P1983, DOI 10.1084/jem.20090480; Guiducci C, 2013, J EXP MED, V210, P2903, DOI 10.1084/jem.20131044; Hawtin S, 2023, CELL REP MED, V4, DOI 10.1016/j.xcrm.2023.101036; Herster F, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-13756-4; Junt T, 2015, NAT REV IMMUNOL, V15, P529, DOI 10.1038/nri3875; Kawai T, 2010, NAT IMMUNOL, V11, P373, DOI 10.1038/ni.1863; Knoepfel T, 2020, J MED CHEM, V63, P8276, DOI 10.1021/acs.jmedchem.0c00130; Marshak-Rothstein A, 2007, ANNU REV IMMUNOL, V25, P419, DOI 10.1146/annurev.immunol.22.012703.104514; Rodero MP, 2017, J EXP MED, V214, P1547, DOI 10.1084/jem.20161451; Vlach J, 2021, J PHARMACOL EXP THER, V376, P397, DOI 10.1124/jpet.120.000275 17 1 1 3 3 AMER CHEMICAL SOC WASHINGTON 1155 16TH ST, NW, WASHINGTON, DC 20036 USA 1948-5875 ACS MED CHEM LETT ACS Med. Chem. Lett. JUL 31 2023 14 8 1054 1062 10.1021/acsmedchemlett.3c00136 http://dx.doi.org/10.1021/acsmedchemlett.3c00136 JUL 2023 9 Chemistry, Medicinal Science Citation Index Expanded (SCI-EXPANDED); Index Chemicus (IC) Pharmacology & Pharmacy O5AV1 37583811 2024-05-07 WOS:001040497100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Andreou, AY; Leonidou, E; Christou, T; Christodoulou, E Andreou, Andreas Y.; Leonidou, Elena; Christou, Theodoros; Christodoulou, Evi Uncommon electrocardiographic presentation of acute left circumflex coronary artery occlusion REVISTA PORTUGUESA DE CARDIOLOGIA English Editorial Material [Andreou, Andreas Y.; Leonidou, Elena; Christou, Theodoros; Christodoulou, Evi] Limassol Gen Hosp, Dept Cardiol, Limassol, Cyprus; [Andreou, Andreas Y.] Univ Nicosia, Med Sch, Nicosia, Cyprus University of Nicosia Andreou, AY (corresponding author), Limassol Gen Hosp, Dept Cardiol, Limassol, Cyprus.; Andreou, AY (corresponding author), Univ Nicosia, Med Sch, Nicosia, Cyprus. y.andreas@yahoo.com de Luna AB, 2008, J ELECTROCARDIOL, V41, P413, DOI 10.1016/j.jelectrocard.2007.10.002; de Luna AB, 2011, J ELECTROCARDIOL, V44, P58, DOI 10.1016/j.jelectrocard.2010.09.011; D'Ascenzo F, 2012, HEART, V98, P914, DOI 10.1136/heartjnl-2011-301596; Gorgels APM, 2001, J AM COLL CARDIOL, V38, P1355, DOI 10.1016/S0735-1097(01)01564-9; Nikus K, 2010, J ELECTROCARDIOL, V43, P91, DOI 10.1016/j.jelectrocard.2009.07.009 5 0 0 0 0 ELSEVIER ESPANA SLU BARCELONA AV JOSEP TARRADELLAS, 20-30, 1ERA PLANTA, BARCELONA, CP-08029, SPAIN 0870-2551 0304-4750 REV PORT CARDIOL Rev. Port. Cardiol. AUG 2023 42 8 747 748 10.1016/j.repc.2023.01.024 http://dx.doi.org/10.1016/j.repc.2023.01.024 JUL 2023 2 Cardiac & Cardiovascular Systems Science Citation Index Expanded (SCI-EXPANDED) Cardiovascular System & Cardiology P6AR5 37172760 gold 2024-05-07 WOS:001051487100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Ayub, N; Soto, G Ayub, Nicolas; Soto, Gabriela Multiple challenges in the development of commercial crops using CRISPR/Cas technology PLANT SCIENCE English Review CRISPR; Editing; Introgression; Variety; Market The CRISPR/Cas system is a highly efficient and versatile tool for editing plant genomes, with the potential to accelerate breeding programs and improve the sustainability of food production. Nevertheless, technical limitations delay the rapid spread of the CRISPR/Cas system benefits in agriculture. The natural features of plant species, including reproductive behavior, ploidy levels, genetic diversity, and generation times, can significantly impact the introgression of edited traits into elite germplasms. The production and selection of edited events require the same level of effort as those of their transgenic equivalents. Additionally, edited alleles tend to be recessive or not fully dominant, which differs from dominant transgenic events. To accelerate the introgression of edited events into conventional and transgenic varieties, we suggest utilizing edits on single-copy genes that induce dominant mutations. In the absence of new, simple traits that provide exceptional economic benefits for large companies, like herbicide tolerance in transgenic crops, we propose the emergence of particular public grants for edited variety productions, especially when the introgression shows a high level of technical feasibility. In the context of climate change, these public actions must be taken quickly to alleviate significant reductions in crop production. [Ayub, Nicolas; Soto, Gabriela] INTA, CONICET, Inst Agrobiotecnol & Biol Mol IABIMO, Buenos Aires, Argentina; [Ayub, Nicolas; Soto, Gabriela] INTA, Inst Genet IGEAF, Acronym, Argentina Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); Instituto Nacional de Tecnologia Agropecuaria (INTA); Instituto Nacional de Tecnologia Agropecuaria (INTA) Soto, G (corresponding author), INTA, CONICET, Inst Agrobiotecnol & Biol Mol IABIMO, Buenos Aires, Argentina. soto.gabrielacinthia@inta.gob.ar Ayub, Nicolas/0000-0001-5012-240X Abdelrahman M, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.721203; Apse MP, 1999, SCIENCE, V285, P1256, DOI 10.1126/science.285.5431.1256; Arora NK., 2019, Environmental Sustainability, V2, P95, DOI [10.1007/s42398-019-00078-w, DOI 10.1007/S42398-019-00078-W]; Buchholzer M, 2023, NEW PHYTOL, V237, P12, DOI 10.1111/nph.18333; Frare R, 2018, J MOL EVOL, V86, P554, DOI 10.1007/s00239-018-9867-3; Kemp L, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2108146119; Lewi DM, 2020, FRONT BIOENG BIOTECH, V8, DOI 10.3389/fbioe.2020.00301; Mallapaty S, 2022, NATURE, V602, P559, DOI 10.1038/d41586-022-00395-x; Pabuayon I.C.M., 2021, STRESS BIOL, V1, P14; Panchy N, 2016, PLANT PHYSIOL, V171, P2294, DOI 10.1104/pp.16.00523; Di Giorgio JAP, 2016, PLANT CELL, V28, P1053, DOI 10.1105/tpc.15.00776; Pixley KV, 2022, NAT GENET, V54, P364, DOI 10.1038/s41588-022-01046-7; Sánchez-Gómez C, 2023, METHODS MOL BIOL, P459, DOI 10.1007/978-1-0716-2561-3_24; Shan QW, 2013, NAT BIOTECHNOL, V31, P686, DOI 10.1038/nbt.2650; Stritzler M, 2018, J BIOTECHNOL, V276, P42, DOI 10.1016/j.jbiotec.2018.04.013; Tyczewska A, 2023, TRENDS BIOTECHNOL, V41, P331, DOI 10.1016/j.tibtech.2022.12.013; Utomo JC, 2021, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.719148; Waltz E, 2022, NAT BIOTECHNOL, V40, P9, DOI 10.1038/d41587-021-00026-2; Zambryski P, 2013, INT J DEV BIOL, V57, P449, DOI 10.1387/ijdb.130190pz; Zhang R, 2019, NAT PLANTS, V5, P480, DOI 10.1038/s41477-019-0405-0 20 0 0 4 5 ELSEVIER IRELAND LTD CLARE ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND 0168-9452 1873-2259 PLANT SCI Plant Sci. OCT 2023 335 111809 10.1016/j.plantsci.2023.111809 http://dx.doi.org/10.1016/j.plantsci.2023.111809 JUL 2023 3 Biochemistry & Molecular Biology; Plant Sciences Science Citation Index Expanded (SCI-EXPANDED) Biochemistry & Molecular Biology; Plant Sciences P5DE6 37482301 2024-05-07 WOS:001050867100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Bhat, P; Kumaran, SS; Goyal, V; Srivastava, AK; Behari, M Bhat, Priyanka; Kumaran, S. Senthil; Goyal, Vinay; Srivastava, Achal K.; Behari, Madhuri Effect of rTMS at SMA on task-based connectivity in PD BEHAVIOURAL BRAIN RESEARCH English Article Parkinson's Disease (PD); Repetitive Transcranial Magnetic Stimulation (rTMS); Supplementary Motor Area (SMA); Multivariate Pattern Analysis (MVPA) SUPPLEMENTARY MOTOR AREA; FUNCTIONAL CONNECTIVITY; PARKINSONS-DISEASE; STIMULATION Background: Transcranial magnetic stimulation (TMS) can aid in alleviating clinical symptoms in Parkinson's disease (PD). To better understand the neural mechanism of the intervention, neuroimaging modalities have been used to assess the effects of rTMS.Objective: To study the changes in cortical connectivity and motor performance with rTMS at supplementary motor area (SMA) in PD using clinical assessment tools and task-based functional MRI. Methodology: 3000 pulses at 5 Hz TMS were delivered at the left SMA once a week for a total of 8 consecutive weeks in 4 sham sessions (week 1-4) and 4 real sessions (week 5 to week 8) in 16 subjects with PD. The outcomes were assessed with UPDRS, PDQ 39 and task-based fMRI at baseline, after sham sessions at week 4, and after real sessions at week 8. Visuo-spatial functional MRI task along with T1 weighted scans (at 3 Tesla) were used to evaluate the effects of rTMS intervention. Multivariate pattern analysis (MVPA) was used to analyse task-based fMRI using Conn toolbox.Results: Improvements (p < 0.05) were observed in UPDRS II, III, Mobility and ADL of PDQ39 after real sessions of rTMS. MVPA of task-based connectivity revealed clusters of activation in right hemispheric precentral area, superior frontal gyrus, middle frontal gyrus, thalamus and cerebellum (cluster threshold pFDR=0.001).Conclusions: Weekly rTMS sessions at SMA incurred clinical motor benefits as revealed by an improvement in clinical scales and dexterity performance. These benefits could be attributed to changes in connectivity remote brain regions in the motor network. [Bhat, Priyanka; Goyal, Vinay; Srivastava, Achal K.; Behari, Madhuri] All India Inst Med Sci AIIMS, Dept Neurol, New Delhi 110029, India; [Kumaran, S. Senthil] All India Inst Med Sci AIIMS, Dept NMR, New Delhi 110029, India; [Goyal, Vinay] The Medicity, Dept Neurol, Medanta, Gurgaon, India; [Behari, Madhuri] Fortis Flt Lt RajanDhall Hosp, Dept Neurol, New Delhi 110070, India All India Institute of Medical Sciences (AIIMS) New Delhi; All India Institute of Medical Sciences (AIIMS) New Delhi Kumaran, SS (corresponding author), All India Inst Med Sci AIIMS, Dept NMR, New Delhi 110029, India. senthil@aiims.edu Srivastava, Achal Kumar/O-4099-2017 Srivastava, Achal Kumar/0000-0002-4590-7947; Kumaran, S Senthil/0000-0002-4275-0139 SERB [SERB/F/4097/2014-15] SERB(Department of Science & Technology (India)Science Engineering Research Board (SERB), India) Funding from SERB, Govt. India (SERB/F/4097/2014-15) is acknowledged. The infrastructural support was provided by the institute. [Anonymous], MED MANAGEMENT MOTOR; Arias P, 2010, MOVEMENT DISORD, V25, P1830, DOI 10.1002/mds.23055; Bhat P, 2023, BRAIN CONNECT, V13, P247, DOI 10.1089/brain.2022.0043; Bidesi NSR, 2021, J NEUROCHEM, V159, P660, DOI 10.1111/jnc.15516; Bohnen NI, 2014, NEUROLOGY, V83, P202, DOI 10.1212/WNL.0000000000000599; Bostan AC, 2018, NAT REV NEUROSCI, V19, P338, DOI 10.1038/s41583-018-0002-7; Casarotto S, 2019, BRAIN STIMUL, V12, P152, DOI 10.1016/j.brs.2018.10.011; Filippi M, 2018, INT REV NEUROBIOL, V141, P439, DOI 10.1016/bs.irn.2018.08.005; Fox MD, 2012, NEUROIMAGE, V62, P2232, DOI 10.1016/j.neuroimage.2012.03.035; Friston K, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P10, DOI 10.1016/B978-012372560-8/50002-4; Gilbert R.M., 2021, NEUROLOGY, V17, P92, DOI [10.17925/USN.2021.17.2.92, DOI 10.17925/USN.2021.17.2.92]; González-García N, 2011, J NEUROL, V258, P1268, DOI 10.1007/s00415-011-5923-2; Hamada M, 2008, MOVEMENT DISORD, V23, P1524, DOI 10.1002/mds.22168; Haxby JV, 2012, NEUROIMAGE, V62, P852, DOI 10.1016/j.neuroimage.2012.03.016; Hayashi T, 2004, ANN NEUROL, V56, P77, DOI 10.1002/ana.20151; Herwig U, 2003, BRAIN TOPOGR, V16, P95, DOI 10.1023/B:BRAT.0000006333.93597.9d; Herz DM, 2014, HUM BRAIN MAPP, V35, P3227, DOI 10.1002/hbm.22397; Hintzen A, 2018, BRAIN STRUCT FUNCT, V223, P569, DOI 10.1007/s00429-017-1584-y; HUGHES AJ, 1992, J NEUROL NEUROSUR PS, V55, P181, DOI 10.1136/jnnp.55.3.181; Jacobs JV, 2009, NEUROSCIENCE, V164, P877, DOI 10.1016/j.neuroscience.2009.08.002; Johnson JS, 2010, BRAIN TOPOGR, V22, P281, DOI 10.1007/s10548-009-0118-1; Mishra A, 2022, J NEUROL NEUROSUR PS, V18, P64, DOI DOI 10.17925/USN.2022.18.1.64; Nieto-Castanon A, 2022, Arxiv, DOI [arXiv:2206.06951, 10.48550/arxiv.2206.06951, DOI 10.48550/ARXIV.2206.06951]; Oliveira PCAD, 2022, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.794784; Pieterman M, 2018, FRONT NEUROL, V9, DOI 10.3389/fneur.2018.00260; Postuma RB, 2015, MOVEMENT DISORD, V30, P1591, DOI 10.1002/mds.26424; Rahimpour S., 2022, SUPPL MOT COMPLEX PA, DOI [10.14802/jmd.21075/J, DOI 10.14802/JMD.21075/J]; Richardson SP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124937; Rossi S, 2009, CLIN NEUROPHYSIOL, V120, P2008, DOI 10.1016/j.clinph.2009.08.016; Schiena G, 2021, EPIDEMIOL PSYCH SCI, V30, DOI 10.1017/S2045796021000482; Schrag A, 2006, MOVEMENT DISORD, V21, P1200, DOI 10.1002/mds.20914; Shibasaki H, 2006, CLIN NEUROPHYSIOL, V117, P2341, DOI 10.1016/j.clinph.2006.04.025; Shine JM, 2019, BRAIN, V142, P1024, DOI 10.1093/brain/awz034; Shirota Y, 2013, NEUROLOGY, V80, P1400, DOI 10.1212/WNL.0b013e31828c2f66; Tiffin J, 1948, J APPL PSYCHOL, V32, P234, DOI 10.1037/h0061266; Udupa K, 2013, FRONT NEUROL, V4, DOI 10.3389/fneur.2013.00128; Vines BW, 2008, EUR J NEUROSCI, V28, P1667, DOI 10.1111/j.1460-9568.2008.06459.x; Whitfield-Gabrieli S, 2012, BRAIN CONNECT, V2, P125, DOI 10.1089/brain.2012.0073; Yang CX, 2018, BRAIN BEHAV, V8, DOI 10.1002/brb3.1132; Zhang WJ, 2022, ECLINICALMEDICINE, V52, DOI 10.1016/j.eclinm.2022.101589; Zhong JG, 2019, NEUROSCI LETT, V705, P159, DOI 10.1016/j.neulet.2019.04.042 41 0 0 3 3 ELSEVIER AMSTERDAM RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS 0166-4328 1872-7549 BEHAV BRAIN RES Behav. Brain Res. AUG 24 2023 452 114602 10.1016/j.bbr.2023.114602 http://dx.doi.org/10.1016/j.bbr.2023.114602 JUL 2023 10 Behavioral Sciences; Neurosciences Science Citation Index Expanded (SCI-EXPANDED) Behavioral Sciences; Neurosciences & Neurology P4VY6 37516209 2024-05-07 WOS:001050667100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Bilu, YF; Gun, S; Naik, SL Bilu, Yuri F.; Gun, Sanoli; Naik, Sunil L. On a non-Archimedean analogue of a question of Atkin and Serre MATHEMATISCHE ANNALEN English Article; Early Access FOURIER COEFFICIENTS; DIVISORS In this article, we investigate a non-Archimedean analogue of a question of Atkin and Serre. More precisely, we derive lower bounds for the largest prime factor of non-zero Fourier coefficients of non-CM normalized cuspidal Hecke eigenforms of even weight k >= 2, level N with integer Fourier coefficients. In particular, we show that for such a form f and for any real number epsilon > 0, the largest prime factor of the p-th Fourier coefficient a(f) (p) of f, denoted by P(a(f)(p)), satisfies P(a(f) (p)) > (log p)(1/8) (log log p)(3/8-epsilon) for almost all primes p. This improves on earlier bounds. We also investigate a number field analogue of a recent result of Bennett, Gherga, Patel and Siksek about the largest prime factor of a(f) (p(m)) for m >= 2. [Bilu, Yuri F.] Univ Bordeaux, Inst Math Bordeaux UMR 5251, F-33405 Talence, France; [Bilu, Yuri F.] CNRS, F-33405 Talence, France; [Gun, Sanoli; Naik, Sunil L.] A CI Homi Bhabha Natl Inst, Inst Math Sci, CIT Campus, Chennai 600113, India Universite de Bordeaux; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Centre National de la Recherche Scientifique (CNRS); Institute of Mathematical Sciences (IMSc) India Gun, S (corresponding author), A CI Homi Bhabha Natl Inst, Inst Math Sci, CIT Campus, Chennai 600113, India. yuri@math.u-bordeaux.fr; sanoli@imsc.res.in; sunilnaik@imsc.res.in Naik, Sunil L/0000-0003-1369-2627 SPARC project [445]; Indo French program in Mathematics (IFPM); DAE number theory plan project SPARC project; Indo French program in Mathematics (IFPM); DAE number theory plan project The authors would like to thank Ram Murty, Purusottam Rath and the referee for valuable suggestions. The authors would also like to thank SPARC project 445 for partial financial support and Indo French program in Mathematics (IFPM). The second and the third author would also like to acknowledge the support of DAE number theory plan project. Barnet-Lamb T, 2011, PUBL RES I MATH SCI, V47, P29, DOI 10.2977/PRIMS/31; Bennett MA, 2022, MATH ANN, V382, P203, DOI 10.1007/s00208-021-02241-3; Bilu Y, 2022, ACTA ARITH, V206, P223, DOI 10.4064/aa211116-13-11; Bugeaud Y, 2000, B LOND MATH SOC, V32, P673, DOI 10.1112/S0024609300007487; Clozel L, 2008, PUBL MATH-PARIS, P1, DOI 10.1007/s10240-008-0016-1; Crandall R, 1997, MATH COMPUT, V66, P433, DOI 10.1090/S0025-5718-97-00791-6; Dobrowolski E., 1979, Acta Arith., V34, P391, DOI DOI 10.4064/AA-34-4-391-401; Garaev MZ, 2007, ARCH MATH, V89, P411, DOI 10.1007/s00013-007-2246-8; Gun S, 2014, NEW YORK J MATH, V20, P229; Halberstam H., 1974, London Math. Soc. Monogr., V4; Harris M, 2010, ANN MATH, V171, P779, DOI 10.4007/annals.2010.171.779; Hong HJ, 2022, BOL SOC MAT MEX, V28, DOI 10.1007/s40590-022-00453-4; Kowalski E, 2007, REV MAT IBEROAM, V23, P281; Lagarias J. C., 1977, Algebraic number fields: L-functions and Galois properties, P409; Luca F, 2006, P INDIAN AS-MATH SCI, V116, P1, DOI 10.1007/BF02829735; Murty MR, 2019, J NUMBER THEORY, V201, P1, DOI 10.1016/j.jnt.2019.02.016; Murty MR, 2007, INT J NUMBER THEORY, V3, P455, DOI 10.1142/S1793042107001036; MURTY MR, 1984, DUKE MATH J, V51, P57, DOI 10.1215/S0012-7094-84-05104-4; MURTY MR, 1988, AM J MATH, V110, P253, DOI 10.2307/2374502; Ribet K.A., 1977, LECT NOTES MATH, V601, P17; SCHINZEL A, 1974, J REINE ANGEW MATH, V268, P27; Serre J.-P., 1976, Enseign. Math., V22, P227; Serre J-P., 1981, Publ. Math. IHES, V54, P123; Shimura G., 1994, Introduction to the arithmetic theory of automorphic functions, V11; Stewart CL, 2013, ACTA MATH-DJURSHOLM, V211, P291, DOI 10.1007/s11511-013-0105-y; Thorner J, 2019, ALGEBR NUMBER THEORY, V13, P1039, DOI 10.2140/ant.2019.13.1039; Voutier P, 1996, ACTA ARITH, V74, P81 27 1 1 0 0 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-5831 1432-1807 MATH ANN Math. Ann. 2023 JUL 31 2023 10.1007/s00208-023-02686-8 http://dx.doi.org/10.1007/s00208-023-02686-8 JUL 2023 28 Mathematics Science Citation Index Expanded (SCI-EXPANDED) Mathematics O0NO7 Green Submitted 2024-05-07 WOS:001040877100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Calhoun, J; Kline-Tilford, A; Verger, J Calhoun, Jackie; Kline-Tilford, Andrea; Verger, Judy Evolution of Pediatric Critical Care Nursing CRITICAL CARE NURSING CLINICS OF NORTH AMERICA English Article PICU; Nursing; Pediatrics; Critical care; History FAMILY-CENTERED CARE; SIMULATION; UNIT; INFECTIONS; GUIDELINES; MANAGEMENT; CHILDREN; SUPPORT; SCORE [Calhoun, Jackie] Univ Pittsburgh, UPMC Childrens Hosp Pittsburgh, Sch Nursing, 3500 Victoria St,440 Victoria Bldg, Pittsburgh, PA 15261 USA; [Kline-Tilford, Andrea] Univ Michigan Hlth Syst, Ann Arbor, MI USA; [Verger, Judy] Univ Iowa, Coll Nursing, Iowa City, IA USA; [Kline-Tilford, Andrea] 656 Thayer Blvd, Northville, MI 48167 USA Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; University of Michigan System; University of Michigan; University of Iowa Kline-Tilford, A (corresponding author), Univ Michigan Hlth Syst, Ann Arbor, MI USA.; Kline-Tilford, A (corresponding author), 656 Thayer Blvd, Northville, MI 48167 USA. aklinetilford@gmail.com Calhoun, Jackie/0000-0003-0826-4740 Ahmed SS, 2012, PEDIATR CRIT CARE ME, V13, pE69, DOI 10.1097/PCC.0b013e31820ac2e1; Akre M, 2010, PEDIATRICS, V125, pE763, DOI 10.1542/peds.2009-0338; Algarni AS, 2022, WORLD J PEDIATR, V18, P83, DOI 10.1007/s12519-021-00499-w; American Association of Critical Care Nurses, 2023, HIST AACN; American Association of Critical Care Nurses, 2023, BEAC AW; Bankhead S, 2014, NURS CLIN N AM, V49, P321, DOI 10.1016/j.cnur.2014.05.006; Bardella IJ, 1999, AM FAM PHYSICIAN, V60, P1743; Barr P, 2022, AUST CRIT CARE, V35, P174, DOI 10.1016/j.aucc.2021.03.007; BARTLETT RH, 1976, T AM SOC ART INT ORG, V22, P80; Blake N, 2022, AACN ADV CRIT CARE, V33, P99, DOI 10.4037/aacnacc2022286; Butler A, 2014, J CLIN NURS, V23, P2086, DOI 10.1111/jocn.12498; Cooper VB, 2013, CRIT CARE NURSE, V33, P21, DOI 10.4037/ccn2013204; CPCCRN, About us; Cummins KA, 2019, NURS CLIN N AM, V54, P127, DOI 10.1016/j.cnur.2018.10.005; Curley MAQ, 2003, NURS RES, V52, P22, DOI 10.1097/00006199-200301000-00004; Curley MAQ, 2018, TRIALS, V19, DOI 10.1186/s13063-018-3075-8; Davidson JE, 2017, CRIT CARE MED, V45, P103, DOI 10.1097/CCM.0000000000002169; Eppich WJ, 2006, CURR OPIN PEDIATR, V18, P266, DOI 10.1097/01.mop.0000193309.22462.c9; Epstein D, 2005, PEDIATR RES, V58, P987, DOI 10.1203/01.PDR.0000182822.16263.3D; Foglia DC, 2011, CRIT CARE NURS CLIN, V23, P239, DOI 10.1016/j.ccell.2011.02.003; Green J., 2021, PEDIATR NURS, V47, P163; GRENVIK A, 1985, CRIT CARE MED, V13, P1001, DOI 10.1097/00003246-198512000-00001; Hartman ME, 2020, PEDIATR NEUROL, V108, P47, DOI 10.1016/j.pediatrneurol.2020.02.003; Hennon TR, 2020, PROG PEDIATR CARDIOL, V57, DOI 10.1016/j.ppedcard.2020.101232; Kissel KA, 2023, CRIT CARE NURSE, V43, P55, DOI 10.4037/ccn2023196; Lambert V, 2017, BMJ OPEN, V7, DOI 10.1136/bmjopen-2016-014497; Levin D.L., 2011, Pediatric Critical Care, V4th; Levin DL, 2013, J PEDIATR INTENSIVE, V2, P147, DOI 10.3233/PIC-13068; Lin YQ, 2015, ADV MED EDUC PRACT, V6, P239, DOI 10.2147/AMEP.S64178; Lincoln PA, 2020, PEDIATR CRIT CARE ME, V21, P1064, DOI 10.1097/PCC.0000000000002505; MaGowan N., 2020, PEDIATR NURS, V46, P273; Manning JC, 2018, PEDIATR CRIT CARE ME, V19, P298, DOI 10.1097/PCC.0000000000001476; Matsuishi Y, 2021, INTENS CRIT CARE NUR, V67, DOI 10.1016/j.iccn.2021.103082; Munro CL, 2022, AM J CRIT CARE, V31, P4, DOI 10.4037/ajcc2022603; National Academy of Medicine, NAT PLAN HLTH WORKF; Pediatric Nursing Certification Board, 2023, US; Pediatric Nursing Certification Board, 2023, CPNP AC ROL; Skaletzky SM, 2012, CLIN PEDIATR, V51, P431, DOI 10.1177/0009922811430342; Snyder MD, 2020, CRIT CARE NURSE, V40, pE12, DOI 10.4037/ccn2020438; Society of Critical Care Medicine, AWARDS; Society of Critical Care Medicine, SURV SEPS CAMP SURV; Society of Critical Care Medicine, 2023, COMMUNICATION; Talbird SE, 2022, PEDIATRICS, V150, DOI 10.1542/peds.2021-056013; Tanne JH, 2022, BMJ-BRIT MED J, V379, DOI 10.1136/bmj.o2681; Thomas TA, 2021, AM J CRIT CARE, V30, pE80, DOI 10.4037/ajcc2021999; Ullman AJ, 2014, NURS EDUC TODAY, V34, P202, DOI 10.1016/j.nedt.2013.09.002; US Department of Health and Human Services, Addressing Health Worker Burnout. The U.S. Surgeon General's Advisory on Building a Thriving Health Workforce; Waak M, 2022, BMC PEDIATR, V22, DOI 10.1186/s12887-022-03232-2; Weiss Scott L, 2020, Pediatr Crit Care Med, V21, pe52, DOI [10.1097/PCC.0000000000002198, 10.1007/s00134-019-05878-6]; Youngblood AQ, 2012, CRIT CARE NURSE, V32, P55, DOI 10.4037/ccn2012499 50 0 0 4 5 W B SAUNDERS CO-ELSEVIER INC PHILADELPHIA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA 0899-5885 1558-3481 CRIT CARE NURS CLIN Crit. Care Nurs. Clin. N. Am. SEP 2023 35 3 265 274 10.1016/j.cnc.2023.04.001 http://dx.doi.org/10.1016/j.cnc.2023.04.001 JUL 2023 10 Nursing Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) Nursing P4UF1 37532380 2024-05-07 WOS:001050617100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Chambers, A; Mackay, D; Farnsworth, K; Morrison, AE; Witteman, HO; Mbbs, PS; Halperin, IJ; Bajaj, HS; Barnes, T; Gilbert, J; Honshorst, K; Kim, J; Lewis, J; MacDonald, B; Mackay, D; Mansell, K; Senior, P; Rabi, D; Sherifali, D Chambers, Alanna; Mackay, Dylan; Farnsworth, Kate; Morrison, Amy E.; Witteman, Holly O.; Mbbs, Peter Senior; Halperin, Ilana J.; Bajaj, Harpreet S.; Barnes, Tracy; Gilbert, Jeremy; Honshorst, Kristin; Kim, James; Lewis, Joanne; MacDonald, Barbara; Mackay, Dylan; Mansell, Kerry; Senior, Peter; Rabi, Doreen; Sherifali, Diana Diabet Canada Clinical Practice; Diabet Canada Clinical Practice Do-It-Yourself Automated Insulin Delivery: A Health-care Practitioner User's Guide CANADIAN JOURNAL OF DIABETES English Article [Barnes, Tracy] Clin Practice Guidelines Diabet Canada, Toronto, ON, Canada Barnes, T (corresponding author), Clin Practice Guidelines Diabet Canada, Toronto, ON, Canada. tracy.barnes@diabetes.ca Senior, Peter/O-4934-2019; Sherifali, Diana/AGZ-4409-2022 Senior, Peter/0000-0003-1033-8673; Sherifali, Diana/0000-0002-4423-3848 Android APS, US; Braune K, 2022, J MED INTERNET RES, V24, DOI 10.2196/37120; Braune K, 2022, LANCET DIABETES ENDO, V10, P58, DOI 10.1016/S2213-8587(21)00267-9; Cemeroglu AP, 2013, ENDOCR PRACT, V19, P805, DOI 10.4158/EP13099.OR; Chan AJ, 2021, CAN J DIABETES, V45, P269, DOI 10.1016/j.jcjd.2020.08.103; Farnsworth K, 2022, ADV TECHNOLOGIES TRE, DOI [10.1089/dia.2022.2525.abstracts, DOI 10.1089/DIA.2022.2525.ABSTRACTS]; github, LOOPDOCS; Lal RA, 2019, ENDOCR REV, V40, P1521, DOI 10.1210/er.2018-00174; Lawton J, 2020, DIABETIC MED, V37, P1030, DOI 10.1111/dme.14252; Messer LH, 2019, DIABETES TECHNOL THE, V21, P462, DOI 10.1089/dia.2019.0105; Mewes D, 2023, J DIABETES SCI TECHN, V17, P1304, DOI 10.1177/19322968221080199; OpenAPS, US; Phillip M, 2023, ENDOCR REV, V44, P254, DOI 10.1210/endrev/bnac022; Riddell MC, 2017, LANCET DIABETES ENDO, V5, P377, DOI 10.1016/S2213-8587(17)30014-1; Suttiratana SC, 2022, DIABETES TECHNOL THE, V24, P416, DOI 10.1089/dia.2021.0485; Van Os M, 2022, ATTD; Walsh J, 2022, J DIABETES SCI TECHN, DOI DOI 10.1177/19322968221087261 17 1 1 0 0 ELSEVIER AMSTERDAM RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS 1499-2671 2352-3840 CAN J DIABETES Can. J. Diabetes JUL 2023 47 5 10.1016/j.jcjd.2023.06.001 http://dx.doi.org/10.1016/j.jcjd.2023.06.001 JUL 2023 17 Endocrinology & Metabolism Science Citation Index Expanded (SCI-EXPANDED) Endocrinology & Metabolism P5NG9 37532366 2024-05-07 WOS:001051137100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Chen, ZY; Shen, QQ; Xiong, JZ; Jiang, JM; Ju, ZC; Zhang, XG Chen, Ziyu; Shen, Qianqian; Xiong, Jianzhen; Jiang, Jiangmin; Ju, Zhicheng; Zhang, Xiaogang Advanced Electrode Materials for Potassium-Ion Hybrid Capacitors BATTERIES & SUPERCAPS English Review potassium-ion hybrid capacitors; electrode materials; energy storage mechanism; energy density; development prospect GRAPHENE OXIDE; K-ION; SUB-MICROSPHERES; PERFORMANCE; STORAGE; ANODE; LITHIUM; BATTERIES; NITROGEN; PROGRESS Potassium-ion hybrid capacitors (PIHCs) overcome the limitations of potassium-ion batteries (PIBs) and supercapacitors (SCs) and integrate the advantages of both, including high energy density, high power density, low cost, long cycle life, and stable electrochemical performance. However, the development of PIHCs is hindered by thermodynamic instability and kinetic hysteresis. Additionally, the dynamic mismatch between anode and cathode materials poses an urgent challenge. To this end, many research works related to material development have been dedicated to overcoming the drawbacks. In this review, the energy storage mechanism of PIHCs is briefly introduced. Moreover, the research progress and achievements of anode and cathode materials in recent years are reviewed, including carbon-based materials, MXenes, transition metal materials, Prussian blue and its analogues. Finally, the challenges and prospects of PIHCs are proposed, together with guiding significant research directions in the future. [Chen, Ziyu; Shen, Qianqian; Xiong, Jianzhen; Jiang, Jiangmin; Ju, Zhicheng] China Univ Min & Technol, Equipments Sch Mat Sci & Phys, Jiangsu Prov Engn Lab High Efficient Energy Storag, Xuzhou 221116, Peoples R China; [Jiang, Jiangmin; Zhang, Xiaogang] Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Electrochem Energy Storage Technol, Nanjing 210016, Peoples R China China University of Mining & Technology; Nanjing University of Aeronautics & Astronautics Jiang, JM; Ju, ZC (corresponding author), China Univ Min & Technol, Equipments Sch Mat Sci & Phys, Jiangsu Prov Engn Lab High Efficient Energy Storag, Xuzhou 221116, Peoples R China.; Jiang, JM; Zhang, XG (corresponding author), Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Electrochem Energy Storage Technol, Nanjing 210016, Peoples R China. jiangmin326@163.com; juzc@cumt.edu.cn; azhangxg@nuaa.edu.cn , Zhicheng/O-2116-2016 , Zhicheng/0000-0002-6316-282X; Jiang, Jiangmin/0000-0003-4876-1135; Zhang, Xiaogang/0000-0003-4464-672X National Natural Science Foundation of China [U1802256, 22209204, 22279162, 21975283]; Natural Science Foundation of Jiangsu Province [BK20221140]; China Postdoctoral Science Foundation [2022M713364]; Fundamental Research Funds for the Central Universities [2022QN1088]; Material Science and Engineering Discipline Guidance Fund of China University of Mining and Technology [CUMTMS202208] National Natural Science Foundation of China(National Natural Science Foundation of China (NSFC)); Natural Science Foundation of Jiangsu Province(Natural Science Foundation of Jiangsu Province); China Postdoctoral Science Foundation(China Postdoctoral Science Foundation); Fundamental Research Funds for the Central Universities(Fundamental Research Funds for the Central Universities); Material Science and Engineering Discipline Guidance Fund of China University of Mining and Technology Acknowledgments This work was supported by the National Natural Science Foundation of China (U1802256, 22209204, 22279162, 21975283), the Natural Science Foundation of Jiangsu Province (BK20221140), the China Postdoctoral Science Foundation (2022M713364), the Fundamental Research Funds for the Central Universities (2022QN1088), the Material Science and Engineering Discipline Guidance Fund of China University of Mining and Technology (CUMTMS202208). Bai RJ, 2022, ACS APPL MATER INTER, V14, P1478, DOI 10.1021/acsami.1c20609; Cai P, 2022, ADV ENERGY MATER, V12, DOI 10.1002/aenm.202103221; Cao B, 2021, ADV FUNCT MATER, V31, DOI 10.1002/adfm.202102126; Cao JH, 2021, ACS APPL MATER INTER, V13, P8497, DOI 10.1021/acsami.1c00115; Chang CH, 2022, ACS NANO, V16, P1486, DOI 10.1021/acsnano.1c09863; Chen LN, 2022, CHEMELECTROCHEM, V9, DOI 10.1002/celc.202200059; Chen MX, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.202004247; Chen M, 2021, ACS SUSTAIN CHEM ENG, V9, P3931, DOI 10.1021/acssuschemeng.0c09311; Chen SH, 2018, ADV ENERGY MATER, V8, DOI 10.1002/aenm.201800140; Chen Z, 2020, J ELECTROCHEM SOC, V167, DOI 10.1149/1945-7111/ab6a84; Chen ZY, 2023, MATER CHEM PHYS, V303, DOI 10.1016/j.matchemphys.2023.127835; Cheng GZ, 2022, CARBON ENERGY, V4, P986, DOI 10.1002/cey2.233; Cui YP, 2021, ADV ENERGY MATER, V11, DOI 10.1002/aenm.202101343; Cui YP, 2019, ACS NANO, V13, P11582, DOI 10.1021/acsnano.9b05284; Dai J, 2022, J POWER SOURCES, V518, DOI 10.1016/j.jpowsour.2021.230771; Ding J, 2018, CHEM REV, V118, P6457, DOI 10.1021/acs.chemrev.8b00116; Dong SY, 2018, ACS APPL MATER INTER, V10, P15542, DOI 10.1021/acsami.7b15314; Dong S, 2021, CARBON, V178, P1, DOI 10.1016/j.carbon.2021.02.094; Dou SM, 2022, NANO ENERGY, V93, DOI 10.1016/j.nanoen.2021.106903; Fan BB, 2020, CARBON, V164, P1, DOI 10.1016/j.carbon.2020.03.035; Fang YZ, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.202005663; Feng WT, 2020, ACS NANO, V14, P4938, DOI 10.1021/acsnano.0c01073; Feng YH, 2020, J ENERGY CHEM, V43, P129, DOI 10.1016/j.jechem.2019.08.013; Gao JY, 2022, ACS NANO, V16, P6255, DOI 10.1021/acsnano.2c00140; Gao JY, 2020, J MATER CHEM A, V8, P13946, DOI 10.1039/d0ta01786h; Ge JM, 2021, J ENERGY CHEM, V57, P28, DOI 10.1016/j.jechem.2020.08.049; Ge JM, 2020, ADV ENERGY MATER, V10, DOI 10.1002/aenm.201903277; Geng ST, 2021, ENERG ENVIRON SCI, V14, P3184, DOI 10.1039/d1ee00193k; Gong DC, 2022, CHEM ENG J, V431, DOI 10.1016/j.cej.2021.133444; He WJ, 2023, NANO-MICRO LETT, V15, DOI 10.1007/s40820-023-01068-8; Ho SF, 2023, CHEM ENG J, V452, DOI 10.1016/j.cej.2022.139199; Pham HD, 2021, ELECTROCHIM ACTA, V389, DOI 10.1016/j.electacta.2021.138717; Pham HD, 2021, ENERGY STORAGE MATER, V34, P475, DOI 10.1016/j.ensm.2020.10.013; Hosaka T, 2020, CHEM REV, V120, P6358, DOI 10.1021/acs.chemrev.9b00463; Hou LR, 2018, J MATER CHEM A, V6, P17947, DOI 10.1039/c8ta04347g; Hu MF, 2023, CHEM ENG J, V451, DOI 10.1016/j.cej.2022.138452; Hu X, 2019, ADV ENERGY MATER, V9, DOI 10.1002/aenm.201901533; Jiang JM, 2019, SMALL METHODS, V3, DOI 10.1002/smtd.201900081; Kim HJ, 2021, ENERGY STORAGE MATER, V40, P197, DOI 10.1016/j.ensm.2021.05.012; Kim T, 2019, J MATER CHEM A, V7, P2942, DOI 10.1039/c8ta10513h; Kubota K, 2018, CHEM REC, V18, P459, DOI 10.1002/tcr.201700057; Lan ZA, 2022, SMALL, V18, DOI 10.1002/smll.202200129; Lang JH, 2020, ACS APPL MATER INTER, V12, P2424, DOI 10.1021/acsami.9b17635; Le Comte A, 2017, J POWER SOURCES, V363, P34, DOI 10.1016/j.jpowsour.2017.07.005; Li B, 2018, ADV MATER, V30, DOI 10.1002/adma.201705670; Li DY, 2021, CHEM ENG J, V417, DOI 10.1016/j.cej.2020.128048; Li F, 2018, SMALL, V14, DOI 10.1002/smll.201702961; Li HX, 2020, J MATER CHEM A, V8, P16302, DOI 10.1039/d0ta04912c; Li JL, 2018, NANO ENERGY, V53, P415, DOI 10.1016/j.nanoen.2018.08.075; Li Q, 2022, J COLLOID INTERF SCI, V621, P169, DOI 10.1016/j.jcis.2022.04.070; Li T, 2021, NEW CARBON MATER, V36, P253, DOI 10.1016/S1872-5805(21)60019-7; Li WZ, 2021, SMALL, V17, DOI 10.1002/smll.202100397; Li X, 2022, J POWER SOURCES, V533, DOI 10.1016/j.jpowsour.2022.231419; Li XC, 2021, NANOSCALE, V13, P2389, DOI 10.1039/d0nr08628b; Lian PC, 2017, NANO ENERGY, V40, P1, DOI 10.1016/j.nanoen.2017.08.002; Liang H., ENERGY ENVIRON MATER; Liang HY, 2021, ENERGY STORAGE MATER, V40, P250, DOI 10.1016/j.ensm.2021.05.013; Lin WC, 2022, ENERGY STORAGE MATER, V51, P38, DOI 10.1016/j.ensm.2022.06.010; Liu J, 2021, ELECTROCHIM ACTA, V378, DOI 10.1016/j.electacta.2021.138141; Liu LT, 2022, J COLLOID INTERF SCI, V628, P975, DOI 10.1016/j.jcis.2022.08.007; Liu LT, 2022, J COLLOID INTERF SCI, V620, P24, DOI 10.1016/j.jcis.2022.03.110; Liu MQ, 2023, RARE METALS, V42, P134, DOI 10.1007/s12598-022-02111-0; Liu MQ, 2020, CHEMSUSCHEM, V13, P5837, DOI 10.1002/cssc.202000578; Liu MQ, 2020, J POWER SOURCES, V469, DOI 10.1016/j.jpowsour.2020.228415; Liu X, 2022, CHEM ENG J, V431, DOI 10.1016/j.cej.2021.133986; Liu Y., 2022, SMALL; Liu Y, 2020, APPL SURF SCI, V525; Lou YK, 2023, J ALLOY COMPD, V937, DOI 10.1016/j.jallcom.2022.168249; Luan YT, 2019, NANO-MICRO LETT, V11, DOI 10.1007/s40820-019-0260-6; Luo Y, 2021, J COLLOID INTERF SCI, V600, P820, DOI 10.1016/j.jcis.2021.05.088; Luo ZC, 2022, J ALLOY COMPD, V914, DOI 10.1016/j.jallcom.2022.165285; Meng CY, 2022, J MATER CHEM A, V10, P22236, DOI 10.1039/d2ta06038h; Min H, 2021, J ALLOY COMPD, V888, DOI 10.1016/j.jallcom.2021.161498; Ming FW, 2019, NANO ENERGY, V62, P853, DOI 10.1016/j.nanoen.2019.06.013; Moon G, 2023, ADV MATER, V35, DOI 10.1002/adma.202203481; Moyer K, 2018, NANOSCALE, V10, P13335, DOI 10.1039/c8nr01685b; Naguib M, 2011, ADV MATER, V23, P4248, DOI 10.1002/adma.201102306; Naskar P, 2021, CHEMELECTROCHEM, V8, P1393, DOI 10.1002/celc.202100029; Nayak PK, 2016, ADV ENERGY MATER, V6, DOI 10.1002/aenm.201502398; Nie P, 2023, ADV FUNCT MATER, V33, DOI 10.1002/adfm.202302235; Pan QG, 2022, ADV MATER, V34, DOI 10.1002/adma.202203485; Pan QG, 2021, ANGEW CHEM INT EDIT, V60, P11835, DOI 10.1002/anie.202103052; Peng YF, 2020, SMALL, V16, DOI 10.1002/smll.202003724; Qian CF, 2022, INT J ENERG RES, V46, P17976, DOI 10.1002/er.8500; Qian Y, 2023, ANGEW CHEM INT EDIT, V62, DOI 10.1002/anie.202217514; Qian Yong, 2021, ADV FUNCT MATER, V31, DOI 10.1002/adfm.v31.3010.1002/ adfm.202103115; Qin YY, 2022, CHINESE CHEM LETT, V33, P1463, DOI 10.1016/j.cclet.2021.08.101; Qiu D., 2022, ACS NANO, V16, P12; Qiu DP, 2020, ADV SCI, V7, DOI 10.1002/advs.202001681; Qiu DP, 2019, ADV FUNCT MATER, V29, DOI 10.1002/adfm.201903496; Qu XY, 2022, NANO ENERGY, V91, DOI 10.1016/j.nanoen.2021.106665; Ramasamy HV, 2019, CHEM ENG J, V368, P235, DOI 10.1016/j.cej.2019.02.172; Ramasamy HV, 2017, J PHYS CHEM LETT, V8, P5021, DOI 10.1021/acs.jpclett.7b02012; Lobato-Peralta DR, 2020, J ENERGY STORAGE, V31, DOI 10.1016/j.est.2020.101667; Ruan JF, 2020, ADV ENERGY MATER, V10, DOI 10.1002/aenm.201904045; Sajjad M, 2021, RSC ADV, V11, P25450, DOI 10.1039/d1ra02445k; Sha M, 2020, ENERGY ENVIRON MATER, V3, P56, DOI 10.1002/eem2.12060; Shao MJ, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.202006561; Shen YF, 2021, ADV FUNCT MATER, V31, DOI 10.1002/adfm.202101181; Su MR, 2023, J COLLOID INTERF SCI, V629, P83, DOI 10.1016/j.jcis.2022.08.126; Sun YJ, 2022, J COLLOID INTERF SCI, V606, P1940, DOI 10.1016/j.jcis.2021.09.143; Sun YR, 2023, APPL MATER TODAY, V30, DOI 10.1016/j.apmt.2022.101702; Wang CY, 2022, ENERG FUEL, V36, P12807, DOI 10.1021/acs.energyfuels.2c02416; Wang DP, 2022, ELECTROCHIM ACTA, V428, DOI 10.1016/j.electacta.2022.140931; Wang D, 2021, ACS APPL ENERG MATER, V4, P13593, DOI 10.1021/acsaem.1c02211; Wang GR, 2022, SMALL, V18, DOI 10.1002/smll.202203288; Wang GR, 2022, ENERGY STORAGE MATER, V46, P10, DOI 10.1016/j.ensm.2021.12.047; Wang GR, 2021, CHEM ENG J, V417, DOI 10.1016/j.cej.2020.127977; Wang GY, 2022, RARE METALS, V41, P3706, DOI 10.1007/s12598-022-02067-1; Wang PF, 2021, APPL SURF SCI, V553, DOI 10.1016/j.apsusc.2021.149569; Wang RT, 2017, ENERGY STORAGE MATER, V9, P195, DOI 10.1016/j.ensm.2017.07.013; Wang W, 2018, ADV ENERGY MATER, V8, DOI 10.1002/aenm.201701648; Wang YX, 2019, NANOSCALE HORIZ, V4, P1394, DOI 10.1039/c9nh00211a; Wang ZL, 2019, J MATER CHEM A, V7, P18109, DOI 10.1039/c9ta06432j; Wang ZM, 2021, CARBON, V174, P556, DOI 10.1016/j.carbon.2020.12.071; Wang ZD, 2023, ADV MATER TECHNOL-US, V8, DOI 10.1002/admt.202200515; Wei CY, 2021, ACS ENERGY LETT, V6, P4336, DOI 10.1021/acsenergylett.1c02092; Wei SW, 2022, CHEMELECTROCHEM, V9, DOI 10.1002/celc.202101715; Wu CH, 2022, CARBON, V196, P727, DOI 10.1016/j.carbon.2022.05.021; Xia QY, 2017, ADV ENERGY MATER, V7, DOI 10.1002/aenm.201701336; Xie ZY, 2021, SUSTAIN ENERG FUELS, V6, P162, DOI 10.1039/d1se01627j; Xu EZ, 2021, NANO-MICRO LETT, V13, DOI 10.1007/s40820-020-00562-7; Xu J, 2021, ENERGY STORAGE MATER, V34, P85, DOI 10.1016/j.ensm.2020.09.001; Xu JJ, 2023, ENERGY ENVIRON MATER, V6, DOI 10.1002/eem2.12450; Xu YS, 2019, J MATER CHEM A, V7, P4334, DOI 10.1039/c8ta10953b; Xu ZQ, 2019, ADV SCI, V6, DOI 10.1002/advs.201802272; Xue LG, 2017, J AM CHEM SOC, V139, P2164, DOI 10.1021/jacs.6b12598; Yang BJ, 2022, ACS APPL ENERG MATER, V5, P5766, DOI 10.1021/acsaem.2c00097; Yang BJ, 2019, ENERGY STORAGE MATER, V23, P522, DOI 10.1016/j.ensm.2019.04.008; Yang LQ, 2023, SMALL, V19, DOI 10.1002/smll.202300440; Yen Z., 2023, ACS APPL ENERG MATER, V6, P2; Yi YY, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.201903878; Yuan F, 2023, COMPOS PART B-ENG, V248, DOI 10.1016/j.compositesb.2022.110379; Yuan F, 2022, PHYS CHEM CHEM PHYS, V24, P3440, DOI 10.1039/d1cp04819h; Zeng Z., 2023, CHEM ENG J, V455; Zhang C, 2021, ADV FUNCT MATER, V31, DOI 10.1002/adfm.202101470; Zhang CC, 2022, NANOSCALE, V14, P6339, DOI 10.1039/d2nr01110g; Zhang DQ, 2023, J MATER SCI, V58, P1523, DOI 10.1007/s10853-022-07807-3; Zhang FZ, 2022, ADV FIBER MATER, V4, P720, DOI 10.1007/s42765-022-00146-7; Zhang H, 2023, ANGEW CHEM INT EDIT, V62, DOI 10.1002/anie.202213980; Zhang TQ, 2022, ENERG ENVIRON SCI, V15, P158, DOI 10.1039/d1ee03214c; Zhang YF, 2022, ELECTROCHIM ACTA, V424, DOI 10.1016/j.electacta.2022.140596; Zhang YS, 2019, J ENERGY STORAGE, V25, DOI 10.1016/j.est.2019.100902; Zhang ZY, 2018, ADV FUNCT MATER, V28, DOI 10.1002/adfm.201802684; Zhao C., 2023, ADV MATER, V35; Zhao L, 2023, NANO-MICRO LETT, V15, DOI 10.1007/s40820-022-01006-0; Zhao SQ, 2021, ANGEW CHEM INT EDIT, V60, P26246, DOI 10.1002/anie.202112090; Zhao SQ, 2021, ADV FUNCT MATER, V31, DOI 10.1002/adfm.202102060; Zhao SQ, 2020, SMALL, V16, DOI 10.1002/smll.201906131; Zhou L, 2017, ELECTROCHIM ACTA, V232, P106, DOI 10.1016/j.electacta.2017.02.096; Zhu G, 2022, MATER TODAY SUSTAIN, V20, DOI 10.1016/j.mtsust.2022.100226; Zhu GJ, 2021, NATL SCI REV, V8, DOI 10.1093/nsr/nwaa152; Zhu ZX, 2022, CHEM REV, V122, P16610, DOI 10.1021/acs.chemrev.2c00289; Zong W, 2021, ADV SCI, V8, DOI 10.1002/advs.202004142 154 5 5 35 50 WILEY-V C H VERLAG GMBH WEINHEIM POSTFACH 101161, 69451 WEINHEIM, GERMANY 2566-6223 BATTERIES SUPERCAPS Batteries Supercaps SEP 2023 6 9 10.1002/batt.202300224 http://dx.doi.org/10.1002/batt.202300224 JUL 2023 27 Electrochemistry; Materials Science, Multidisciplinary Science Citation Index Expanded (SCI-EXPANDED) Electrochemistry; Materials Science R0WL1 2024-05-07 WOS:001037557100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J da Silva, S; Pérez-Gregorio, R; Mateus, N; Freitas, V; Dias, R da Silva, Sara; Perez-Gregorio, Rosa; Mateus, Nuno; Freitas, Victor; Dias, Ricardo Evidence of increased gluten-induced perturbations in the nucleophilic tone and detoxifying defences of intestinal epithelial cells impaired by gastric disfunction FOOD RESEARCH INTERNATIONAL English Article Celiac disease; Oxidative stress; Gluten peptides; Gluten digestion CELIAC-DISEASE; QUANTITATIVE-DETERMINATION; CACO-2; WHEAT; GLUTATHIONE; PEPTIDES; HT-29; ASSAY; LINE It has been increasingly demonstrated over the past few years that some proteolytically resistant gluten peptides may directly affect intestinal cell structure and functions by modulating pro-inflammatory gene expression and oxidative stress. The relationship between oxidative cell damage and Celiac Disease (CD) is supported by several studies on human intestinal epithelial cell lines, such as the Caco-2 cell model, already shown to be particularly sensitive to the pro-oxidative and pro-apoptotic properties of gluten protein digests. Through providing valuable evidence concerning some of the pathophysiological mechanisms that may be at play in gluten-related disorders, most of these in vitro studies have been employing simplified digestion schemes and intestinal cell systems that do not fully resemble mature enterocytes in terms of their characteristic tight junctions, microvilli and membrane transporters. Herein the peptide profile and pro-oxidative effect of two different gastrointestinal gliadin digestions was thoroughly characterized and comprehensively compared: one following the complete INFOGEST workflow and a second one by-passing gastric processing, to assess the dependence of gliadin-triggered downstream cell effects on pepsin activity. In both matrices, gluten-derived immunogenic peptide sequences were identified by non-targeted LC-MS/MS. Altogether, this study provides first-hand data concerning the still unexplored peptide composition, gastric-dependence and immunogenicity of physiologically representative gliadin protein digests as well as foundational clues stressing the need for more complex and integrated in vitro cell systems when modelling and exploiting gluten-induced perturbations in the nucleophilic tone and inflammatory status of intestinal epithelial cells. [da Silva, Sara; Perez-Gregorio, Rosa; Mateus, Nuno; Freitas, Victor; Dias, Ricardo] Univ Porto, Dept Chem & Biochem, LAQV REQUIMTE, Fac Sci, Porto, Portugal; [Perez-Gregorio, Rosa] Univ Vigo, Dept Analyt & Food Chem, Nutr & Bromatol Area, Fac Sci, Orense, Spain Universidade do Porto; Universidade de Vigo Dias, R (corresponding author), Univ Porto, Dept Chem & Biochem, LAQV REQUIMTE, Fac Sci, Porto, Portugal. ricardo.dias@fc.up.pt Perez Gregorio, Maria Rosa/A-3373-2014; Mateus, Nuno/F-3019-2013 Perez Gregorio, Maria Rosa/0000-0003-3030-5799; Correia Dias, Ricardo Jorge/0000-0003-2664-8473; Mateus, Nuno/0000-0002-9318-9732 FCT/MCTES through national funds [UIDB/50006/2020] FCT/MCTES through national funds(Fundacao para a Ciencia e a Tecnologia (FCT)) Funding This work was financially supported through the project UIDB/50006/2020, funded by FCT/MCTES through national funds. Ahn J, 2013, BBA-PROTEINS PROTEOM, V1834, P1222, DOI 10.1016/j.bbapap.2012.10.003; BAI J, 1991, J CLIN GASTROENTEROL, V13, P521, DOI 10.1097/00004836-199110000-00009; BAKER SS, 1992, IN VITRO CELL DEV-AN, V28A, P643; Biesiekierski JR, 2017, J GASTROEN HEPATOL, V32, P78, DOI 10.1111/jgh.13703; Brodkorb A, 2019, NAT PROTOC, V14, P991, DOI 10.1038/s41596-018-0119-1; Bromilow S, 2017, J PROTEOMICS, V163, P67, DOI 10.1016/j.jprot.2017.03.026; Buhrke T, 2011, DEV GROWTH DIFFER, V53, P411, DOI 10.1111/j.1440-169X.2011.01258.x; Freire R, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43426-w; Freitas D, 2022, FRONT NUTR, V9, DOI 10.3389/fnut.2022.986272; Gagnon M, 2013, J MICROBIOL METH, V94, P274, DOI 10.1016/j.mimet.2013.06.027; Green PHR, 2007, NEW ENGL J MED, V357, P1731, DOI 10.1056/NEJMra071600; HILGERS AR, 1990, PHARMACEUT RES, V7, P902, DOI 10.1023/A:1015937605100; HUET G, 1995, J CELL SCI, V108, P1275; Hundsberger H, 2017, SLAS DISCOV, V22, P1035, DOI 10.1177/2472555217697435; Iwamoto M, 2022, INTERNAL MED, V61, P323, DOI 10.2169/internalmedicine.7901-21; Juhász A, 2015, DATABASE-OXFORD, DOI 10.1093/database/bav100; Lee IJ, 2009, J PROTEOME RES, V8, P4104, DOI 10.1021/pr8010759; Mannervik B, 2001, Curr Protoc Toxicol, VChapter 7, DOI 10.1002/0471140856.tx0702s00; Mazzarella G, 2014, AM J PHYSIOL-GASTR L, V307, pG302, DOI 10.1152/ajpgi.00002.2014; Mickowska B, 2012, J MICROB BIOTEC FOOD, V1, P742; Ogilvie O, 2020, FOOD CHEM, V333, DOI 10.1016/j.foodchem.2020.127466; Okumura R, 2017, EXP MOL MED, V49, DOI 10.1038/emm.2017.20; Pali-Schöll I, 2018, NUTRIENTS, V10, DOI 10.3390/nu10091129; Pérez S, 2017, FREE RADICAL BIO MED, V104, P75, DOI 10.1016/j.freeradbiomed.2016.12.048; Prandi B, 2014, ANAL BIOANAL CHEM, V406, P4765, DOI 10.1007/s00216-014-7858-9; Rahman I, 2006, NAT PROTOC, V1, P3159, DOI 10.1038/nprot.2006.378; Rivabene R, 1999, BBA-MOL BASIS DIS, V1453, P152, DOI 10.1016/S0925-4439(98)00095-7; Schalk K, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172819; Scharmach E, 2009, TOXICOLOGY, V265, P122, DOI 10.1016/j.tox.2009.09.017; Sollid LM, 2020, IMMUNOGENETICS, V72, P85, DOI 10.1007/s00251-019-01141-w; Sollid LM, 2012, IMMUNOGENETICS, V64, P455, DOI 10.1007/s00251-012-0599-z; Stenman SM, 2009, ANN MED, V41, P390, DOI 10.1080/07853890902878138; Stricker S, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24054795; Truzzi F, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22010172; Van De Walle J, 2010, TOXICOL IN VITRO, V24, P1441, DOI 10.1016/j.tiv.2010.04.002; Verhoeckx K., 2015, IMPACT FOOD BIOACTIV, DOI DOI 10.1007/978-3-319-16104-4; Vontas JG, 2000, PESTIC BIOCHEM PHYS, V68, P184, DOI 10.1006/pest.2000.2512; Wang D, 2017, SCI REP-UK, V7, DOI 10.1038/srep40721; Wanyera R, 2017, WHEAT IMPROVEMENT MA; Wieser H, 2023, CEREAL CHEM, V100, P23, DOI 10.1002/cche.10572 40 1 1 1 3 ELSEVIER AMSTERDAM RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS 0963-9969 1873-7145 FOOD RES INT Food Res. Int. NOV 2023 173 1 113317 10.1016/j.foodres.2023.113317 http://dx.doi.org/10.1016/j.foodres.2023.113317 JUL 2023 10 Food Science & Technology Science Citation Index Expanded (SCI-EXPANDED) Food Science & Technology P5IR6 37803626 hybrid 2024-05-07 WOS:001051017100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Dong, YT; Wang, WH; Su, GL; Liu, L Dong, Yutong; Wang, Wenhao; Su, Guanlong; Liu, Lei Active control strategy for low frequency vibration of space flexible cables based on improved sliding mode controller JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL English Article flexible cable low frequency vibration; sliding mode control; dual power reaching law; radial basis function neural network; extended state observer; particle swarm optimization MANIPULATORS; ROBOT Effective vibration control of flexible cables is increasingly demanded for space flexible structure. For the low frequency dynamics of flexible cables, a novel vibration control strategy based on sliding mode control is proposed in this paper. First, the complex dynamical behavior of flexible cables is modeled using D'Alembert's principle. Second, an improved dual power reaching law is put forward to better address the chattering problem of the sliding mode controller. Then, an extended state observer (ESO) with the radial basis function (RBF) neural network is designed to compensate for internal uncertainties and external disturbances as well as further improve the control accuracy. Lyapunov function is employed to analyze the stability of the system. Finally, considering the large number of parameters of the proposed controller, an improved particle swarm optimization (PSO) algorithm is designed to automatically adjust these parameters. The effectiveness of the proposed method is demonstrated by simulation results. [Dong, Yutong; Wang, Wenhao; Liu, Lei] Northwestern Polytech Univ, Sch Astronaut, Xian, Peoples R China; [Su, Guanlong] Xian Inst Space Radio Technol, Antenna Stn, Xian, Peoples R China; [Liu, Lei] Northwestern Polytech Univ, Sch Astronaut, 127 West Youyi Rd, Xian, Shaanxi, Peoples R China Northwestern Polytechnical University; Northwestern Polytechnical University Liu, L (corresponding author), Northwestern Polytech Univ, Sch Astronaut, 127 West Youyi Rd, Xian, Shaanxi, Peoples R China. leiliu@nwpu.edu.cn Dong, Yutong/0000-0003-4516-8483 National Natural Science Foundation of China [52075446, 51675430] National Natural Science Foundation of China(National Natural Science Foundation of China (NSFC)) The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the authors are grateful for the financial support of the National Natural Science Foundation of China (52075446,51675430). Afsar F., 2022, IEEE T IND ELECTRON; Chu WL, 2020, J LOW FREQ NOISE V A, V39, P1187, DOI 10.1177/1461348419872305; Fang YM, 2018, J LOW FREQ NOISE V A, V37, P1079, DOI 10.1177/1461348418767097; FUJINO Y, 1993, J APPL MECH-T ASME, V60, P948, DOI 10.1115/1.2901006; GAO WB, 1993, IEEE T IND ELECTRON, V40, P45, DOI 10.1109/41.184820; Jiang J, 2013, J SOUND VIB, V332, P3626, DOI 10.1016/j.jsv.2013.02.001; Jin QB, 2020, ADV SPACE RES, V66, P2416, DOI 10.1016/j.asr.2020.08.005; Jung S, 2018, INT J CONTROL AUTOM, V16, P937, DOI 10.1007/s12555-017-0186-z; Krarup NH, 2017, PROCEDIA ENGINEER, V199, P3158, DOI 10.1016/j.proeng.2017.09.506; Li JY, 2023, MECH SYST SIGNAL PR, V188, DOI 10.1016/j.ymssp.2022.110050; Liu Y, 2018, AEROSP SCI TECHNOL, V77, P524, DOI 10.1016/j.ast.2018.04.005; Lu JH, 2021, IEEE T IND ELECTRON, V68, P5897, DOI 10.1109/TIE.2020.2998745; Oliveira J, 2017, NONLINEAR DYNAM, V90, P1353, DOI 10.1007/s11071-017-3731-7; Panathula CB, 2018, IEEE T CONTR SYST T, V26, P2020, DOI 10.1109/TCST.2017.2753162; Peng J, 2020, MECH SYST SIGNAL PR, V137, DOI 10.1016/j.ymssp.2019.106488; Qian DW, 2018, IEEE-CAA J AUTOMATIC, V5, P706, DOI 10.1109/JAS.2018.7511078; Rodriguez-Torres A., 2021, T I MEAS CONTROL, V12, P1; Rsetam K, 2022, IEEE INTL CONF IND I, P407, DOI 10.1109/INDIN51773.2022.9976102; Rsetam K, 2022, DRONES-BASEL, V6, DOI 10.3390/drones6120428; Rsetam K, 2022, IEEE T SYST MAN CY-S, V52, P4272, DOI 10.1109/TSMC.2021.3096835; Rsetam K, 2020, IEEE T IND ELECTRON, V67, P10822, DOI 10.1109/TIE.2019.2958283; Rsetam K, 2017, IEEE DECIS CONTR P; Sami I, 2021, ISA T, V111, P275, DOI 10.1016/j.isatra.2020.11.001; Shi Y., 1998, MODIFIED PARTICLE SW; Sun LF, 2017, J LOW FREQ NOISE V A, V36, P366, DOI 10.1177/1461348417744304; Tan CA, 2000, J SOUND VIB, V236, P861, DOI 10.1006/jsvi.2000.3040; Wu Yongsheng, 2016, Applied Mechanics and Materials, V829, P137, DOI 10.4028/www.scientific.net/AMM.829.137; Yang HJ, 2018, IEEE-CAA J AUTOMATIC, V5, P457, DOI 10.1109/JAS.2017.7510820; Yu BS, 2020, NONLINEAR DYNAM, V101, P1233, DOI 10.1007/s11071-020-05844-8; Yu SH, 2005, AUTOMATICA, V41, P1957, DOI 10.1016/j.automatica.2005.07.001; Zhai G, 2018, CHINESE J AERONAUT, V31, P1786, DOI 10.1016/j.cja.2018.01.012; Zhang F, 2021, IEEE T FUZZY SYST, V29, P1739, DOI 10.1109/TFUZZ.2020.2985325; Zhao YK, 2020, J FRANKLIN I, V357, P12019, DOI 10.1016/j.jfranklin.2020.04.037 33 0 0 17 22 SAGE PUBLICATIONS LTD LONDON 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND 1461-3484 2048-4046 J LOW FREQ NOISE V A J. Low Freq. Noise Vib. Act. Control MAR 2024 43 1 476 493 10.1177/14613484231184311 http://dx.doi.org/10.1177/14613484231184311 JUL 2023 18 Acoustics Science Citation Index Expanded (SCI-EXPANDED) Acoustics IC6U6 gold 2024-05-07 WOS:001040607100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Duan, XP; Zhao, WB; Ma, GL Duan, Xiang-Pan; Zhao, Wenbin; Ma, Guo-Liang Hadronization effects on transverse momentum dependent jet fragmentation function in small systems EUROPEAN PHYSICAL JOURNAL PLUS English Article QUARK-GLUON PLASMA; ENERGY-LOSS; PARTON; MATTER; PERSPECTIVE; COLLISIONS The transverse momentum jT-dependent jet fragmentation functions have been investigated in proton+proton (p + p) and proton+lead (p + Pb) collisions at vsNN = 5.02 TeV with a multiphase transport model containing both a simple quark coalescence mechanism and a new hybrid hadronization mechanism with coalescence and fragmentation processes. Hadronized by the new hadronization mechanism, the AMPT model achieves a quantitative description of the jT-dependent jet fragmentation functions measured by ALICE. Besides, no obvious jet-medium interaction and cold nuclear matter effects on the jT-dependent jet fragmentation functions in p + Pb collisions were observed. We found the jT-dependent jet fragmentation functions are dominated by the quark coalescence contribution for the new hadronization mechanism, which can be decomposed into narrow and wide parts. The root mean square value of the wide part depends on the jet radius R and jet transverse momentum pT, jet, which is sensitive to different hadronization mechanisms and their components. Therefore, the jT-dependent jet fragmentation functions are proposed as a sensitive probe to study the non-perturbative hadronization effect of jets in small colliding systems. [Duan, Xiang-Pan; Ma, Guo-Liang] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion beam Applicat MOE, Shanghai 200433, Peoples R China; [Duan, Xiang-Pan; Ma, Guo-Liang] NSFC, Shanghai Res Ctr Theoret Nucl Phys, Shanghai 200438, Peoples R China; [Duan, Xiang-Pan; Ma, Guo-Liang] Fudan Univ, Shanghai 200438, Peoples R China; [Zhao, Wenbin] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA Fudan University; Chinese Academy of Sciences; Fudan University; Wayne State University Ma, GL (corresponding author), Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion beam Applicat MOE, Shanghai 200433, Peoples R China.; Ma, GL (corresponding author), NSFC, Shanghai Res Ctr Theoret Nucl Phys, Shanghai 200438, Peoples R China.; Ma, GL (corresponding author), Fudan Univ, Shanghai 200438, Peoples R China. zhaowenb@pku.edu.cn; glma@fudan.edu.cn Ma, Guo-Liang/0000-0002-7002-8442 National Natural Science Foundation of China [12147101, 11890714, 11835002, 11961131011, 11421505]; National Key Research and Development Program of China [2022YFA1604900]; Strategic Priority Research Program of Chinese Academy of Sciences [XDB34030000]; Guangdong Major Project of Basic and Applied Basic Research [2020B0301030008]; National Science Foundation (NSF) [ACI-2004571] National Natural Science Foundation of China(National Natural Science Foundation of China (NSFC)); National Key Research and Development Program of China; Strategic Priority Research Program of Chinese Academy of Sciences(Chinese Academy of Sciences); Guangdong Major Project of Basic and Applied Basic Research; National Science Foundation (NSF)(National Science Foundation (NSF)) AcknowledgementsX.-P.D. and G.-L.M. are supported by the National Natural Science Foundation of China under Grants Nos. 12147101, 11890714, 11835002, 11961131011, 11421505, the National Key Research and Development Program of China under Contract No. 2022YFA1604900, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDB34030000, and the Guangdong Major Project of Basic and Applied Basic Research under Grant No. 2020B0301030008. W. Z. is supported by the National Science Foundation (NSF) under Grant No. ACI-2004571 within the framework of the XSCAPE project of the JETSCAPE collaboration. Aaboud M, 2019, PHYS REV LETT, V123, DOI 10.1103/PhysRevLett.123.042001; Aad G, 2014, PHYS LETT B, V739, P320, DOI 10.1016/j.physletb.2014.10.065; Aad G., 2010, PHYS REV LETT, V105; Aad G., 2011, EUR PHYS J C, V71; Aad G., 2015, PHYS REV LETT, V114; Aaij R, 2019, PHYS REV LETT, V123, DOI 10.1103/PhysRevLett.123.232001; Aaltonen T., 2009, PHYS REV LETT, V102; Aamodt K, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.092301; Aamodt K., 2011, PHYS LETT B, V696; Abelev B., 2013, PHYS REV LETT, V110; Acharya etal S., 2021, J HIGH ENERGY PHYS, V09, P211; Acharya S, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2019)169; Adams J, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.172302; Adcox K., 2005, NUCL PHYS A, V757, P184, DOI DOI 10.1016/J.NUCLPHYSA.2005.03.086; Adler SS., 2006, PHYS REV C, V73, DOI [10.1103/PhysRevC.73.054903 nucl-ex/0510021, DOI 10.1103/PHYSREVC.73.054903NUCL-EX/0510021]; Adler SS., 2006, PHYS REV D, V74, DOI [10.1103/PhysRevD.74.072002 hep-ex/0605039, DOI 10.1103/PHYSREVD.74.072002HEP-EX/0605039]; Adolfsson J., 2020, EUR PHYS J, V56, P10997; ANGELIS ALS, 1980, PHYS LETT B, V97, P163, DOI 10.1016/0370-2693(80)90572-9; Arsen I., 2005, NUCL PHYS A, V757, P1; Arsene I, 2005, NUCL PHYS A, V757, P1, DOI 10.1016/j.nuclphysa.2005.02.130; Back BB, 2005, NUCL PHYS A, V757, P28, DOI 10.1016/j.nuclphysa.2005.03.084; Baier R, 2000, ANNU REV NUCL PART S, V50, P37, DOI 10.1146/annurev.nucl.50.1.37; Baier R, 1997, NUCL PHYS B, V484, P265, DOI 10.1016/S0550-3213(96)00581-0; Beringer J., 2012, PHYS REV D, V86, DOI DOI 10.1103/PHYSREVD.86.010001; Bozek P, 2015, PHYS LETT B, V748, P301, DOI 10.1016/j.physletb.2015.06.007; Burke KM, 2014, PHYS REV C, V90, DOI 10.1103/PhysRevC.90.014909; Bzdak A, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.252301; Cacciari M., 1896, Eur. Phys. J. C, V72, P1111; Cacciari M, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/04/063; Cao SS, 2021, REP PROG PHYS, V84, DOI 10.1088/1361-6633/abc22b; Cao SS, 2018, PHYS LETT B, V777, P255, DOI 10.1016/j.physletb.2017.12.023; Caucal P, 2020, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2020)204; Chang NB, 2020, PHYS LETT B, V801, DOI 10.1016/j.physletb.2019.135181; Chatrchyan S, 2014, PHYS REV C, V90, DOI [10.1103/PhysRevC.90.024908, 10.1103/PhysRevD.90.032004]; Chatrchyan S., 2012, J HIGH ENERGY PHYS, V10; Chatrchyan S., 1945, EUR PHYS J C, V72; Chatrchyan S., 2015, CMSPASHIN15004; Chatrchyan S., 2014, PHYS LETT B, V730; Chen SY, 2020, CHINESE PHYS C, V44, DOI 10.1088/1674-1137/44/2/024103; D J., 1982, FERMILAB PUB 82 059; Dasgupta M, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/02/055; FEYNMAN RP, 1978, PHYS REV D, V18, P3320, DOI 10.1103/PhysRevD.18.3320; Fries RJ, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.202303; Gao Z, 2018, PHYS REV C, V97, DOI 10.1103/PhysRevC.97.044903; Greco V, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.202302; GYULASSY M, 1990, PHYS LETT B, V243, P432, DOI 10.1016/0370-2693(90)91409-5; GYULASSY M, 1994, COMPUT PHYS COMMUN, V83, P307, DOI 10.1016/0010-4655(94)90057-4; Gyulassy M, 2005, NUCL PHYS A, V750, P30, DOI 10.1016/j.nuclphysa.2004.10.034; Han KC, 2016, PHYS REV C, V93, DOI 10.1103/PhysRevC.93.045207; He L, 2016, PHYS LETT B, V753, P506, DOI 10.1016/j.physletb.2015.12.051; Hwa RC, 2004, PHYS REV C, V70, DOI 10.1103/PhysRevC.70.024904; Kang ZB, 2019, PHYS LETT B, V798, DOI 10.1016/j.physletb.2019.134978; Kang ZB, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2017)068; Kaufmann T, 2020, PHYS REV D, V101, DOI 10.1103/PhysRevD.101.079901; Larkoski AJ, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2014)146; LI BA, 1995, PHYS REV C, V52, P2037, DOI 10.1103/PhysRevC.52.2037; Lin ZW, 2021, NUCL SCI TECH, V32, DOI 10.1007/s41365-021-00944-5; Lin ZW, 2005, PHYS REV C, V72, DOI 10.1103/PhysRevC.72.064901; Luo A, 2022, EUR PHYS J C, V82, DOI 10.1140/epjc/s10052-022-10110-9; Ma G.-L., 2013, PHYS REV C, V87; Ma G.-L., 2014, PHYS REV C, V89; Ma GL, 2014, PHYS LETT B, V739, P209, DOI 10.1016/j.physletb.2014.10.066; Ma GL, 2014, PHYS REV C, V89, DOI 10.1103/PhysRevC.89.064909; Ma GL, 2013, PHYS REV C, V88, DOI 10.1103/PhysRevC.88.021902; Ma GL, 2013, PHYS LETT B, V724, P278, DOI 10.1016/j.physletb.2013.06.029; Majumder A, 2006, PHYS REV C, V73, DOI 10.1103/PhysRevC.73.044901; Milhano G, 2018, PHYS LETT B, V779, P409, DOI 10.1016/j.physletb.2018.01.029; Milhano JG, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4130-9; Nie MW, 2014, PHYS REV C, V90, DOI 10.1103/PhysRevC.90.014907; Qin GY, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.152303; Qin GY, 2015, INT J MOD PHYS E, V24, DOI 10.1142/S0218301315300143; Salgado CA, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.042301; Shen C, 2020, NUCL SCI TECH, V31, DOI 10.1007/s41365-020-00829-z; Shi SZ, 2019, CHINESE PHYS C, V43, DOI 10.1088/1674-1137/43/4/044101; Sjöstrand T, 2008, COMPUT PHYS COMMUN, V178, P852, DOI 10.1016/j.cpc.2008.01.036; SJOSTRAND T, 1994, COMPUT PHYS COMMUN, V82, P74, DOI 10.1016/0010-4655(94)90132-5; Song HC, 2017, NUCL SCI TECH, V28, DOI 10.1007/s41365-017-0245-4; STERMAN G, 1977, PHYS REV LETT, V39, P1436, DOI 10.1103/PhysRevLett.39.1436; Wan RZ, 2019, CHINESE PHYS C, V43, DOI 10.1088/1674-1137/43/5/054110; WANG XN, 1992, PHYS REV LETT, V68, P1480, DOI 10.1103/PhysRevLett.68.1480; Wang XN, 1997, PHYS REP, V280, P287, DOI 10.1016/S0370-1573(96)00022-1; Wang XN, 2004, PHYS LETT B, V595, P165, DOI 10.1016/j.physletb.2004.05.021; WANG XN, 1991, PHYS REV D, V44, P3501, DOI 10.1103/PhysRevD.44.3501; Wiedemann U. A., 2010, Landolt-Bornstein-Group I Elementary Particles, Nuclei and Atoms, P521; Xu JC, 2015, CHINESE PHYS LETT, V32, DOI 10.1088/0256-307X/32/9/092501; Zhang B, 1998, COMPUT PHYS COMMUN, V109, P193, DOI 10.1016/S0010-4655(98)00010-1; Zhang JY, 2017, CHINESE PHYS LETT, V34, DOI 10.1088/0256-307X/34/10/101201; Zhao WB, 2022, PHYS REV LETT, V128, DOI 10.1103/PhysRevLett.128.022302; Zhao WB, 2020, PHYS REV LETT, V125, DOI 10.1103/PhysRevLett.125.072301; Zhou FC, 2020, EUR PHYS J A, V56, DOI 10.1140/epja/s10050-020-00043-w; Zyla PA, 2020, PROG THEOR EXP PHYS, V2020, DOI 10.1093/ptep/ptaa104 91 0 0 4 4 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 2190-5444 EUR PHYS J PLUS Eur. Phys. J. Plus JUL 31 2023 138 7 669 10.1140/epjp/s13360-023-04303-8 http://dx.doi.org/10.1140/epjp/s13360-023-04303-8 13 Physics, Multidisciplinary Science Citation Index Expanded (SCI-EXPANDED) Physics O0QF8 Green Submitted 2024-05-07 WOS:001040947100001 SCI 2023 2024/05/07 00:00:00 2023_SCI_050710_AD8E3A98A40DDC18_14.txt J Eapen, D; Mbango, C; Daniels, G; Joseph, NM; Mary, A; Mathews, N; Carr, KK; Wells, C; Suriaga, A; Saint Fleur, A Eapen, Doncy; Mbango, Catherine; Daniels, Glenda; Mathew Joseph, Nitha; Mary, Annapoorna; Mathews, Nisha; Carr, Kathryn Kravetz; Wells, Cheryl; Suriaga, Armiel; Saint Fleur, Angeline Recommendations to improve maternal health equity among Black women in The South": A position paper from the SNRS minority health research interest & implementation group
引用
收藏
页码:0160-6891 / 1098-240X
页数:46
相关论文
共 50 条
  • [21] COMPETITIVE COORDINATION IN THE N-,O-,S-DONATING LIGAND SEQUENCE - COBALT(II), NICKEL(II), COPPER(II), AND PALLADIUM(II) CHELATE COMPLEXES WITH O-N-TOSYLAMINO(OXY, MERCAPTO)-T-ARYLIDENE-4-AMINOANTIPYRINE
    GARNOVSKII, AD
    BURLOV, AS
    YUSMAN, TA
    LITVINOV, VV
    KOCHIN, SG
    KOORDINATSIONNAYA KHIMIYA, 1995, 21 (06): : 471 - 475
  • [22] Synthesis and Characterization of Tridentate Phenoxy-Imine Ligand [N,N,O] Nickel(II) and Palladium(II) Complexes and Their Catalytic Behaviors in Vinyl Polymerization of Norbornene
    Li, Aike
    Chen, Jianxin
    Zhang, Li
    Li, Zhongshui
    Zhu, Meiping
    Zhang, Wenjie
    Lin, Xinrong
    Zhang, Zhichun
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 113 (03) : 1642 - 1650
  • [23] SYNTHESIS AND CHARACTERIZATION OF COPPER(II) COMPLEXES OF A TETRADENTATE N3O LIGAND - MONONUCLEAR ANALOGS FOR PHENOLATE-BRIDGED DINUCLEAR COMPLEXES
    KARLIN, KD
    COHEN, BI
    INORGANICA CHIMICA ACTA-BIOINORGANIC CHEMISTRY, 1985, 107 (02): : L17 - L20
  • [24] Antimony(V) and Tin(IV) Complexes with Redox-Active O,N,O-Donor Ligand in the Electrosynthesis of Symmetrical Disulfides
    Lavrent'ev, V. A.
    Shinkar', E., V
    Smolyaninov, I., V
    Ryabukhin, Yu, I
    Berberova, N. T.
    RUSSIAN JOURNAL OF COORDINATION CHEMISTRY, 2021, 47 (05) : 341 - 346
  • [25] Antimony(V) and Tin(IV) Complexes with Redox-Active O,N,O-Donor Ligand in the Electrosynthesis of Symmetrical Disulfides
    V. A. Lavrent’ev
    E. V. Shinkar’
    I. V. Smolyaninov
    Yu. I. Ryabukhin
    N. T. Berberova
    Russian Journal of Coordination Chemistry, 2021, 47 : 341 - 346
  • [26] Structural and redox properties in thioether-based (N/S) copper(II/I) complexes: Experimental and theoretical investigations
    Rammal, Wassim
    Jamet, Helene
    Philouze, Christian
    Pierre, Jean-Louis
    Saint-Aman, Eric
    Belle, Catherine
    INORGANICA CHIMICA ACTA, 2009, 362 (07) : 2321 - 2326
  • [27] PALLADIUM(II) AND PLATINUM(II) COMPLEXES WITH A NOVEL P-S(O)-P TRIDENTATE LIGAND
    SIAH, SY
    LEUNG, PH
    MOK, KF
    POLYHEDRON, 1994, 13 (23) : 3253 - 3255
  • [28] Magnetic exchange interactions in dinuclear copper(II) and nickel(II) complexes with μ-oxalato bridges.: The structure of μ-oxalato(O,′,O",O′")-bis{[1,8-di(2-pyridyl)-3,6-dithiaoctane-N,N′,S,S′]nickel(II)} dinitrate dihydrate
    Castiñeiras, A
    Domínguez, R
    Gómez-Rodríguez, L
    Borrás, J
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2003, 629 (06): : 1096 - 1103
  • [29] Nickel(II) complexes of tridentate N,N,O-donor ligands:: Syntheses, structures and redox properties
    Karunakar, GV
    Sangeetha, NR
    Susila, V
    Pal, S
    JOURNAL OF COORDINATION CHEMISTRY, 2000, 50 (01) : 51 - 63
  • [30] SYNTHESIS, CHARACTERIZATION AND ELECTROCHEMISTRY OF COPPER(II), NICKEL(II), COBALT(II) AND ZINC(II) COMPLEXES OF A BINUCLEATING LIGAND WITH [N2S]2O DONORS
    ADHIKARY, B
    NANDA, KK
    DAS, R
    MANDAL, SK
    NAG, K
    POLYHEDRON, 1992, 11 (03) : 347 - 353