Determinantal Varieties From Point Configurations on Hypersurfaces

被引:0
|
作者
Caminata, Alessio [1 ]
Moon, Han-Bom [2 ]
Schaffler, Luca [3 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Dipartimento Eccellenza 2023 2027, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] Fordham Univ, Dept Math, New York, NY 10023 USA
[3] Univ Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
关键词
EQUATIONS; RINGS;
D O I
10.1093/imrn/rnad244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the scheme X-r,X-d,X-n parameterizing ordered points in projective space P-r that lie on a common hypersurface of degree d. We show that this scheme has a determinantal structure, and we prove that it is irreducible, Cohen-Macaulay, and normal. Moreover, we give an algebraic and geometric description of the singular locus of X-r,X-d,X-n in terms of Castelnuovo-Mumford regularity and d-normality. This yields a characterization of the singular locus of X-2,X-d,X-n and X-3,X-2,X-n
引用
收藏
页码:19743 / 19772
页数:30
相关论文
共 50 条