Review on the Lithium-Ion Battery Thermal Management System Based on Composite Phase Change Materials: Progress and Outlook

被引:8
|
作者
Yang, Hanxue [1 ]
Zhang, Guanhua [1 ]
Dou, Binlin [1 ]
Yan, Xiaoyu [2 ]
Lu, Wei [1 ]
Wu, Zhigen [3 ,4 ]
Yang, Qiguo [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
[2] Univ Exeter, Environm & Sustainabil Inst, Penryn TR10 9FE, England
[3] Resource Reuse Tongi Univ, State Key Lab Pollut Control, Shanghai 200092, Peoples R China
[4] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
POROUS METAL FOAM; HEAT DISSIPATION CAPABILITY; CHANGE MATERIALS PCM; ENERGY-STORAGE; CONDUCTIVITY ENHANCEMENT; LATENT-HEAT; PERFORMANCE ANALYSIS; COOLING STRATEGY; CARBON-FIBER; RUNAWAY;
D O I
10.1021/acs.energyfuels.3c03973
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the widespread use of lithium-ion batteries, their thermal safety issues are becoming more and more prominent. In combination of the research progress and critical technologies of composite phase change materials, a specific review of the applications based on composite phase change materials in battery thermal management systems is mainly presented. This review introduces the modification and optimization of composite phase change materials and their application in the thermal management system of lithium-ion batteries and focuses on the cooling methods commonly used according to the different materials and systems, which include air cooling, liquid cooling, phase change material cooling, heat pipe cooling, thermoelectric cooling, and a variety of multiple coupling methods. In comparison of the coupled cooling to other individual methods, it can be found that not only the cooling efficiency of the battery can be improved but the uniformity of the surface temperature can also be enhanced, which increases the safety and service life. Finally, the research results and bottlenecks of the battery thermal management system based on composite phase change materials are summarized, and rationalization suggestions are proposed, which have a certain guiding significance for the future direction of the development.
引用
收藏
页码:2573 / 2600
页数:28
相关论文
共 50 条
  • [1] Porous-Material-Based Composite Phase Change Materials for a Lithium-Ion Battery Thermal Management System
    Fang, Min
    Zhou, Jianduo
    Fei, Hua
    Yang, Kai
    He, Ruiqiang
    ENERGY & FUELS, 2022, 36 (08) : 4153 - 4173
  • [2] Phase change materials for lithium-ion battery thermal management systems: A review
    Li, Zaichao
    Zhang, Yuang
    Zhang, Shufen
    Tang, Bingtao
    JOURNAL OF ENERGY STORAGE, 2024, 80
  • [3] Thermal management performance of lithium-ion battery based on phase change materials
    Yin S.
    Kang P.
    Han J.
    Zhang C.
    Wang L.
    Tong L.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (10): : 5518 - 5529
  • [5] Influence of mechanical vibration on composite phase change material based thermal management system for lithium-ion battery
    Zhang, Wencan
    Li, Xingyao
    Wu, Weixiong
    Huang, Jianfeng
    JOURNAL OF ENERGY STORAGE, 2022, 54
  • [6] Flame retardant composite phase change materials with MXene for lithium-ion battery thermal management systems
    Wang, Yuqi
    Zhao, Luyao
    Zhan, Wang
    Chen, Yin
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [7] A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries
    Zhao, Yanqi
    Zou, Boyang
    Zhang, Tongtong
    Jiang, Zhu
    Ding, Jianning
    Ding, Yulong
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [8] Numerical optimization for a phase change material based lithium-ion battery thermal management system
    Wang, Shuping
    Zhang, Danfeng
    Li, Changhao
    Wang, Junkai
    Zhang, Jiaqing
    Cheng, Yifeng
    Mei, Wenxin
    Cheng, Siyuan
    Qin, Peng
    Duan, Qiangling
    Sun, Jinhua
    Wang, Qingsong
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [9] Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials
    Xie, Yongqi
    Tang, Jincheng
    Shi, Shang
    Xing, Yuming
    Wu, Hongwei
    Hu, Zhongliang
    Wen, Dongsheng
    ENERGY CONVERSION AND MANAGEMENT, 2017, 154 : 562 - 575
  • [10] Experimental Investigation on Phase Change Materials for Thermal Management of Lithium-ion Battery Packs
    Thaler, Stephan
    da Silva, Sylvicley Figueira
    Hauser, Robert
    Lackner, Roman
    PROCEEDINGS OF THE 14TH INTERNATIONAL RENEWABLE ENERGY STORAGE CONFERENCE 2020 (IRES 2020), 2021, 6 : 171 - 176