Isolation and substrate dependence on extracellular vesicle characterisation using atomic force microscopy

被引:1
|
作者
Dobhal, Garima [1 ]
Cottam, Sophie [1 ]
Jankowski, Helen [2 ,3 ]
Weidenhofer, Jude [2 ,3 ]
Goreham, Renee, V [1 ,3 ]
机构
[1] Univ Newcastle, Sch Informat & Phys Sci, Callaghan 2308, Australia
[2] Univ Newcastle, Sch Biomed Sci & Pharm, Ourimbah 2258, Australia
[3] Hunter Med Res Inst HMRI, Lookout Rd, New Lambton Hts, NSW 2305, Australia
来源
NANO EXPRESS | 2023年 / 4卷 / 03期
关键词
microscopy; extracellular vesicles; exosomes; imaging; nanoparticles; PROSTATE; CELLS; AFM;
D O I
10.1088/2632-959X/aceb7d
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Extracellular vesicles are nano- to micro-sized structures that carry biomolecules between cells to coordinate cellular activity and communication. Isolation and characterisation must be standardised to better understand the role of extracellular vesicles and how they can be used for disease diagnosis. Here we use atomic force microscopy to determine the physical differences between extracellular vesicles isolated using two different methods. Extracellular vesicles were isolated using two standardised methods, vacuum filtration and syringe filtration. In addition, extracellular vesicles were immobilised to plain mica and amino-functionalised mica to observe differences in adhesion onto substrates with different hydrophobicity. The application of atomic force microscopy enabled the study of vesicle adhesion, size distribution and morphology on the two different surfaces. It was found that both the isolation method and the substrate had a considerable effect on the physical properties of the extracellular vesicles, such as root mean square roughness values and size distribution. This demonstrates the ability to use atomic force microscopy to gain a more detailed understanding of the physical features of extracellular vesicles and the influence of different isolation methods on their morphology.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Atomic Force Microscopy: The Characterisation of Amyloid Protein Structure in Pathology
    Visser, Maria J. E.
    Pretorius, Etheresia
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2019, 19 (32) : 2958 - 2973
  • [42] Surface characterisation and biomechanical analysis of the sclera by atomic force microscopy
    Grant, Colin A.
    Thomson, Neil H.
    Savage, Michael D.
    Woon, Hong W.
    Greig, Denis
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2011, 4 (04) : 535 - 540
  • [43] Microcrystallography using atomic force microscopy
    Helbig, HF
    Beasock, JV
    Ramseyer, GO
    Walsh, LH
    APPLIED PHYSICS LETTERS, 1996, 68 (13) : 1778 - 1780
  • [44] Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers
    Linnemann, R
    Gotszalk, T
    Rangelow, IW
    Dumania, P
    Oesterschulze, E
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (02): : 856 - 860
  • [45] CHARACTERISATION OF EXTRACELLULAR VESICLE DELIVERY USING A VIBRATING MESH NEBULIZER
    Leime, Ciaran O.
    Gilligan, Katie
    Larkin, Celine
    McCauley, Gerry
    MacLoughlin, Ronan
    JOURNAL OF AEROSOL MEDICINE AND PULMONARY DRUG DELIVERY, 2023, 36 (06) : A31 - A31
  • [46] Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers
    Linnemann, R.
    Gotszalk, T.
    Rangelow, I.W.
    Dumania, P.
    Oesterschulze, E.
    Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1996, 14 (02):
  • [47] The architecture of neutrophil extracellular traps investigated by atomic force microscopy
    Pires, Ricardo H.
    Felix, Stephan B.
    Delcea, Mihaela
    NANOSCALE, 2016, 8 (29) : 14193 - 14202
  • [48] Fault Isolation of Dense High Rc Array by Using Conductive Atomic Force Microscopy
    Hu, Wei-Shan
    Yang, Hui-Wen
    Huang, Yung-Sheng
    ISTFA 2011: CONFERENCE PROCEEDINGS FROM THE 37TH INTERNATIONAL SYMPOSIUM FOR TESTING AND FAILURE ANALYSIS, 2011, : 293 - 295
  • [49] Rupture force determination using atomic force microscopy
    Costello, Erica
    Akaygun, Sevil
    Pacheco, Kimberly A. O.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237 : 300 - 300
  • [50] Wear characterisation of articular cartilage surfaces at a nano-scale using atomic force microscopy
    Wang, M.
    Peng, Z.
    Wang, J.
    Jiang, X.
    TRIBOLOGY INTERNATIONAL, 2013, 63 : 235 - 242