Multi-omic large scale risk prediction for hepatocellular carcinoma

被引:0
|
作者
Clusmann, Jan [1 ]
Schneider, Kai Markus [1 ]
Trautwein, Christian [1 ]
Schneider, Carolin V. [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Gastroenterol Metab Disorders & Internal Int, Aachen, Germany
关键词
D O I
暂无
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
FRI-275
引用
收藏
页码:S492 / S493
页数:2
相关论文
共 50 条
  • [21] Bayesian simultaneous factorization and prediction using multi-omic data
    Samorodnitsky, Sarah
    Wendt, Chris H.
    Lock, Eric F.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 197
  • [22] Development and validation of multi-omic prognostic signature of anoikis-related genes in liver hepatocellular carcinoma
    Ding, Dongxiao
    Wang, Dianqian
    Qin, Yunsheng
    MEDICINE, 2023, 102 (46) : E36190
  • [23] Improvement of prediction ability by integrating multi-omic datasets in barley
    Wu, Po-Ya
    Stich, Benjamin
    Weisweiler, Marius
    Shrestha, Asis
    Erban, Alexander
    Westhoff, Philipp
    Van Inghelandt, Delphine
    BMC GENOMICS, 2022, 23 (01)
  • [24] MONET: Multi-omic module discovery by omic selection
    Rappoport, Nimrod
    Safra, Roy
    Shamir, Ron
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [25] Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data
    Angarita-Rodriguez, Andrea
    Mendoza-Mejia, Nicolas
    Gonzalez, Janneth
    Papin, Jason
    Aristizabal, Andres Felipe
    Pinzon, Andres
    FRONTIERS IN SYSTEMS BIOLOGY, 2025, 4
  • [26] Multi-omic analyses of hepatocellular carcinoma to determine immunological characteristics and key nodes in gene-expression network
    Wang, Zhihui
    Zhang, Shuijun
    BIOSCIENCE REPORTS, 2021, 41 (07)
  • [27] Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes
    Sudhakar, Malvika
    Rengaswamy, Raghunathan
    Raman, Karthik
    FRONTIERS IN GENETICS, 2022, 13
  • [28] A Framework for Multi-Omic Prediction of Treatment Response to Biologic Therapy for Psoriasis
    Foulkes, Amy C.
    Watson, David S.
    Carr, Daniel F.
    Kenny, John G.
    Slidel, Timothy
    Parslew, Richard
    Pirmohamed, Munir
    Anders, Simon
    Reynolds, Nick J.
    Griffiths, Christopher E. M.
    Warren, Richard B.
    Barnes, Michael R.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (01) : 100 - 107
  • [29] Multi-omic strategies for transcriptome-wide prediction and association studies
    Bhattacharya, Arjun
    Santos, Hudson J.
    Love, Michael I.
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 470 - 471
  • [30] Attribution of original contribution in large datasets in the era of multi-omic studies
    Mohassel, Payam
    Guadagnin, Eleonora
    Bonnemann, Carsten G.
    ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2022, 9 (06): : 895 - 896