A quantum electromechanical interface for long-lived phonons
被引:8
|
作者:
Bozkurt, Alkim
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USACALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
Bozkurt, Alkim
[1
,2
]
Zhao, Han
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USACALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
Zhao, Han
[1
,2
]
Joshi, Chaitali
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USACALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
Joshi, Chaitali
[1
,2
]
LeDuc, Henry G. G.
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Jet Prop Lab, Pasadena, CA USACALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
LeDuc, Henry G. G.
[3
]
Day, Peter K. K.
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Jet Prop Lab, Pasadena, CA USACALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
Day, Peter K. K.
[3
]
Mirhosseini, Mohammad
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USACALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
Mirhosseini, Mohammad
[1
,2
]
机构:
[1] CALTECH, Gordon & Betty Moore Lab Engn, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
In single crystals, the suppression of intrinsic loss channels at low temperatures leads to exceptionally long mechanical lifetimes. Quantum electrical control of such long-lived mechanical oscillators would enable the development of phononic memory elements, sensors and transducers. The integration of piezoelectric materials is one approach to introducing electrical control, but the challenges of combining heterogeneous materials lead to severely limited phonon lifetimes. Here we present a non-piezoelectric silicon electromechanical system capable of operating in the gigahertz frequency band. Relying on a driving scheme based on electrostatic fields and the kinetic inductance effect in disordered superconductors, we demonstrate a parametrically enhanced electromechanical coupling of g/2 pi = 1.1 MHz, sufficient to enter the strong-coupling regime with a cooperativity of e=1, 200. In our best devices, we measure mechanical quality factors approaching Q approximate to 10(7), measured at low-phonon numbers and millikelvin temperatures. Despite using strong electrostatic fields, we find the cavity mechanics system in the quantum ground state, verified by thermometry measurements. Simultaneously achieving ground-state operation, long mechanical lifetimes and strong coupling sets the stage for employing silicon electromechanical devices in hybrid quantum systems and as a tool for studying the origins of acoustic loss in the quantum regime. [GRAPHICS]